Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Predicting bloodstream infection outcome using machine learning

View ORCID ProfileYazeed Zoabi, Orli Kehat, Dan Lahav, Ahuva Weiss-Meilik, Amos Adler, View ORCID ProfileNoam Shomron
doi: https://doi.org/10.1101/2021.05.18.21257369
Yazeed Zoabi
1Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
2Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, 6997801, Israel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yazeed Zoabi
Orli Kehat
3I-Medata AI Center, Tel-Aviv Sourasky Medical Center, Tel Aviv, 6423906, Israel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dan Lahav
1Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
2Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, 6997801, Israel
4The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 6997801, Israel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ahuva Weiss-Meilik
3I-Medata AI Center, Tel-Aviv Sourasky Medical Center, Tel Aviv, 6423906, Israel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: amosa{at}tlvmc.gov.il ahuvawm{at}tlvmc.gov.il nshomron{at}tauex.tau.ac.il
Amos Adler
1Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
5Clinical Microbiology Laboratory, Tel Aviv Sourasky Medical Center, Tel Aviv, 6423906, Israel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: amosa{at}tlvmc.gov.il ahuvawm{at}tlvmc.gov.il nshomron{at}tauex.tau.ac.il
Noam Shomron
1Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
2Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, 6997801, Israel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Noam Shomron
  • For correspondence: amosa{at}tlvmc.gov.il ahuvawm{at}tlvmc.gov.il nshomron{at}tauex.tau.ac.il
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Article usage

Article usage: May 2021 to August 2025

AbstractFullPdf
May 20217041577
Jun 20215941345
Jul 2021681318
Aug 20211401612
Sep 202148720
Oct 202166836
Nov 202153823
Dec 202129611
Jan 202227180
Feb 20221813
Mar 20222331
Apr 20222724
May 202234411
Jun 20222837
Jul 20222110
Aug 20221872
Sep 202234514
Oct 202226210
Nov 20221746
Dec 20221216
Jan 2023141010
Feb 20231031
Mar 20231001
Apr 20231862
May 2023824
Jun 2023854
Jul 2023822
Aug 202317134
Sep 20231262
Oct 20231122
Nov 202312812
Dec 20231234
Jan 2024921
Feb 20241246
Mar 2024699
Apr 2024257
May 2024633
Jun 2024903
Jul 2024408
Aug 202418810
Sep 202428313
Oct 20241225
Nov 202416110
Dec 20247213
Jan 2025625
Feb 20257135
Mar 2025323211
Apr 20251066
May 202511118
Jun 2025191110
Jul 202519118
Aug 2025012
Back to top
PreviousNext
Posted May 19, 2021.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Predicting bloodstream infection outcome using machine learning
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Predicting bloodstream infection outcome using machine learning
Yazeed Zoabi, Orli Kehat, Dan Lahav, Ahuva Weiss-Meilik, Amos Adler, Noam Shomron
medRxiv 2021.05.18.21257369; doi: https://doi.org/10.1101/2021.05.18.21257369
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Predicting bloodstream infection outcome using machine learning
Yazeed Zoabi, Orli Kehat, Dan Lahav, Ahuva Weiss-Meilik, Amos Adler, Noam Shomron
medRxiv 2021.05.18.21257369; doi: https://doi.org/10.1101/2021.05.18.21257369

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Informatics
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)