Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

A random forest model for forecasting regional COVID-19 cases utilizing reproduction number estimates and demographic data

View ORCID ProfileJoseph Galasso, View ORCID ProfileDuy M. Cao, View ORCID ProfileRobert Hochberg
doi: https://doi.org/10.1101/2021.05.23.21257689
Joseph Galasso
1Department of Biology, #11, University of Dallas, Irving, TX 75062
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Joseph Galasso
  • For correspondence: jgalasso{at}udallas.edu
Duy M. Cao
2Department of Computer Science, #134, University of Dallas, Irving, TX 75062
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Duy M. Cao
Robert Hochberg
3Department of Computer Science, #50, University of Dallas, Irving, TX 75062
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Robert Hochberg
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Article usage

Article usage: May 2021 to August 2025

AbstractFullPdf
May 2021516672
Jun 2021178625
Jul 202198817
Aug 2021120734
Sep 20211874651
Oct 20211102262
Nov 20211042243
Dec 20212461461
Jan 2022724822
Feb 2022553221
Mar 2022513920
Apr 2022484921
May 2022473323
Jun 2022381617
Jul 20224165
Aug 20223769
Sep 202238611
Oct 20224584
Nov 20222347
Dec 202221126
Jan 2023291010
Feb 20232098
Mar 20231751
Apr 202331611
May 202318612
Jun 2023968
Jul 20231313
Aug 202321125
Sep 20231966
Oct 20231011
Nov 202310612
Dec 20231421
Jan 20242146
Feb 20241546
Mar 20241007
Apr 20241487
May 20241398
Jun 20241956
Jul 20241157
Aug 20241868
Sep 2024451717
Oct 20241543
Nov 202413311
Dec 20241616
Jan 20251857
Feb 2025193310
Mar 2025544715
Apr 202531924
May 2025271717
Jun 2025462223
Jul 2025492735
Aug 2025214
Back to top
PreviousNext
Posted December 03, 2021.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
A random forest model for forecasting regional COVID-19 cases utilizing reproduction number estimates and demographic data
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A random forest model for forecasting regional COVID-19 cases utilizing reproduction number estimates and demographic data
Joseph Galasso, Duy M. Cao, Robert Hochberg
medRxiv 2021.05.23.21257689; doi: https://doi.org/10.1101/2021.05.23.21257689
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
A random forest model for forecasting regional COVID-19 cases utilizing reproduction number estimates and demographic data
Joseph Galasso, Duy M. Cao, Robert Hochberg
medRxiv 2021.05.23.21257689; doi: https://doi.org/10.1101/2021.05.23.21257689

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)