A random forest model for forecasting regional COVID-19 cases utilizing reproduction number estimates and demographic data
View ORCID ProfileJoseph Galasso, View ORCID ProfileDuy M. Cao, View ORCID ProfileRobert Hochberg
doi: https://doi.org/10.1101/2021.05.23.21257689
Joseph Galasso
1Department of Biology, #11, University of Dallas, Irving, TX 75062
Duy M. Cao
2Department of Computer Science, #134, University of Dallas, Irving, TX 75062
Robert Hochberg
3Department of Computer Science, #50, University of Dallas, Irving, TX 75062

Article usage
Posted December 03, 2021.
A random forest model for forecasting regional COVID-19 cases utilizing reproduction number estimates and demographic data
Joseph Galasso, Duy M. Cao, Robert Hochberg
medRxiv 2021.05.23.21257689; doi: https://doi.org/10.1101/2021.05.23.21257689
Subject Area
Subject Areas
- Addiction Medicine (349)
- Allergy and Immunology (668)
- Allergy and Immunology (668)
- Anesthesia (181)
- Cardiovascular Medicine (2648)
- Dermatology (223)
- Emergency Medicine (399)
- Epidemiology (12228)
- Forensic Medicine (10)
- Gastroenterology (759)
- Genetic and Genomic Medicine (4103)
- Geriatric Medicine (387)
- Health Economics (680)
- Health Informatics (2657)
- Health Policy (1005)
- Hematology (363)
- HIV/AIDS (851)
- Medical Education (399)
- Medical Ethics (109)
- Nephrology (436)
- Neurology (3882)
- Nursing (209)
- Nutrition (577)
- Oncology (2030)
- Ophthalmology (585)
- Orthopedics (240)
- Otolaryngology (306)
- Pain Medicine (250)
- Palliative Medicine (75)
- Pathology (473)
- Pediatrics (1115)
- Primary Care Research (452)
- Public and Global Health (6527)
- Radiology and Imaging (1403)
- Respiratory Medicine (871)
- Rheumatology (409)
- Sports Medicine (342)
- Surgery (448)
- Toxicology (53)
- Transplantation (185)
- Urology (165)