Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Comparing the genetic and environmental architecture of blood count, blood biochemistry and urine biochemistry biological ages with machine learning

View ORCID ProfileAlan Le Goallec, Samuel Diai, View ORCID ProfileThéo Vincent, View ORCID ProfileChirag J. Patel
doi: https://doi.org/10.1101/2021.07.05.21260032
Alan Le Goallec
1Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
2Department of Systems, Synthetic and Quantitative Biology, Harvard University, Cambridge, MA, 02118, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Alan Le Goallec
Samuel Diai
1Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Théo Vincent
1Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Théo Vincent
Chirag J. Patel
1Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Chirag J. Patel
  • For correspondence: chirag_patel{at}hms.harvard.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

While a large number of biological age predictors have been built from blood samples, a blood count-based biological age predictor is lacking, and the genetic and environmental factors associated with blood-measured accelerated aging remain elusive. In the following, we leveraged 31 blood count biomarkers measured from 489,079 blood samples, 28 blood biochemistry biomarkers measured from 245,147 blood samples, and four urine biochemistry biomarkers measured from 158,381 samples to build three distinct biological age predictors by training machine learning models to predict age. Blood biochemistry significantly outperformed blood count and urine biochemistry in terms of age prediction (RMSE: 5.92+-0.02 vs. 7.60+-0.02 years and 7.72+-0.04 years). We performed genome wide association studies [GWASs], and found accelerated blood biochemistry, blood count and urine biochemistry aging to be respectively 26.2+-0.3%, 18.1+-0.2% and 10.5±0.5% GWAS-heritable. We identified 1,081 single nucleotide polymorphisms [SNPs] associated with accelerated blood biochemistry aging, 2,636 SNPs associated with accelerated blood cells aging and 24 SNPs associated with accelerated urine biochemistry aging. Similarly, we identified biomarkers, clinical phenotypes, diseases, environmental and socioeconomic factors associated with accelerated blood biochemistry, blood cells and urine biochemistry aging.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

NIEHS R00 ES023504 NIEHS R21 ES25052. NIAID R01 AI127250 NSF 163870 MassCATS, Massachusetts Life Science Center Sanofi The funders had no role in the study design or drafting of the manuscript(s).

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

The Harvard internal review board (IRB) deemed the research as non-human subjects research (IRB: IRB16-2145).

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

We used the UK Biobank (project ID: 52887). The code can be found at https://github.com/Deep-Learning-and-Aging. The results can be interactively and extensively explored at https://www.multidimensionality-of-aging.net/. We will make the biological age phenotypes available through UK Biobank upon publication. The GWAS results can be found at https://www.dropbox.com/s/59e9ojl3wu8qie9/Multidimensionality_of_aging-GWAS_results.zip?dl=0.

https://github.com/Deep-Learning-and-Aging

https://www.multidimensionality-of-aging.net/

https://www.dropbox.com/s/59e9ojl3wu8qie9/Multidimensionality_of_aging-GWAS_results.zip?dl=0

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted July 07, 2021.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Comparing the genetic and environmental architecture of blood count, blood biochemistry and urine biochemistry biological ages with machine learning
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Comparing the genetic and environmental architecture of blood count, blood biochemistry and urine biochemistry biological ages with machine learning
Alan Le Goallec, Samuel Diai, Théo Vincent, Chirag J. Patel
medRxiv 2021.07.05.21260032; doi: https://doi.org/10.1101/2021.07.05.21260032
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Comparing the genetic and environmental architecture of blood count, blood biochemistry and urine biochemistry biological ages with machine learning
Alan Le Goallec, Samuel Diai, Théo Vincent, Chirag J. Patel
medRxiv 2021.07.05.21260032; doi: https://doi.org/10.1101/2021.07.05.21260032

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Informatics
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)