Abstract
Introduction Machine learning and artificial intelligence (AI) models have been applied in histopathology to solve specific problems like detection of metastasis in lymph nodes and immunohistochemical scoring. We have aimed to develop a machine learning model which can be trained in histopathology from the basics, i.e. identification of normal tissue. We have tried to replicate the process through which a human pathologist learns recognition of normal tissue from histological sections, and evaluate the performance of a machine learning model at this task.
Materials and methods A total of 658 histologic images were anonymised, microphotographed at 10x magnification, under the same condition of illumination, with a Magnus DC5 integrated microphotography system. The images were split into two subsets, training (386) and validation (272 images). The images belonged to seven classes of tissue: brain, intestine, kidney, liver, lungs, muscle and skin. Archived material of the hospital were used for the study. A machine learning model using convolutional neural network (CNN) was developed on the Keras platform, using the convolution layers of a pretrained VGG16 model. The model was trained with the training set of images over 10 epochs. After training, performance of the model was assessed on the validation set.
Results The model achieved 88.24% accuracy in classifying the images of the validation set. The most frequent errors were met in recognising images of kidney (14 errors, 33.33%). The commonest error was wrongly classifying kidney tissue as liver (07 errors). Analysis of the deeper layers of the neural network revealed specific patterns in images which were wrongly classified.
Conclusion The results of the present study indicates that a convolutional neural network might be trained in histology similar to a trainee pathologist. The study represents the first step towards developing a machine learning model as a generalised histopathological image classifier.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No funding agency is involved
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Institutional Ethical Committee MH Jalandhar (retrospective approval) 1. Dr Harish Chander Sharma, Registrar MH Jalandhar (retd) 2. Dr Rajesh Khanna, Head of the Dept of Surgery, MH Jalandhar 3. Dr Samrat Mitra, Dept of General Medicine, MH Jalandhar DECISION: APPROVED
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes