Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Better individual-level risk models can improve the targeting and life-saving potential of early-mortality interventions

Chad Hazlett, Antonio P. Ramos, Stephen Smith
doi: https://doi.org/10.1101/2021.07.20.21260818
Chad Hazlett
1Dept. of Political Science, University of California Los Angeles
2Dept. of Statistics, University of California Los Angeles
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Antonio P. Ramos
3Califonia Center for Population Research, University of California, Los Angeles
4Jośe Luiz Egydio Setúbal Foundation, Sãao Paulo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: tomramos{at}g.ucla.edu
Stephen Smith
2Dept. of Statistics, University of California Los Angeles
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Infant mortality remains high and uneven in much of sub-Saharan Africa. Even low-cost, highly effective therapies can only save lives in proportion to how successfully they can be targeted to those children who, absent the treatment, would have died. This places great value on maximizing the accuracy of any targeting or means-testing algorithm. Yet, the interventions that countries deploy in hopes of reducing mortality are often targeted based on simple models of wealth or income or a few additional variables. Examining 22 countries in sub-Saharan Africa, we illustrate the use of flexible (machine learning) risk models employing up to 25 generally available pre-birth variables from the Demographic and Health Surveys. Using these models, we construct risk scores such that the 10 percent of the population at highest risk account for 15-30 percent of infant mortality, depending on the country. Successful targeting in these models turned on several variables other than wealth, while models that employ only wealth data perform little or no better than chance. Consequently, employing such data and models to predict high-risk births in the countries studied flexibly could substantially improve the targeting and thus the life-saving potential of existing interventions.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

CCPR Population Research Infrastructure Grant P2C from NICHD P2C-HD041022

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

This paper does not involve human subjects

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Footnotes

  • No significant changes.

Data Availability

The data is available via Demographic and Health Surveys.

https://www.dhsprogram.com/

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted October 20, 2023.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Better individual-level risk models can improve the targeting and life-saving potential of early-mortality interventions
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Better individual-level risk models can improve the targeting and life-saving potential of early-mortality interventions
Chad Hazlett, Antonio P. Ramos, Stephen Smith
medRxiv 2021.07.20.21260818; doi: https://doi.org/10.1101/2021.07.20.21260818
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Better individual-level risk models can improve the targeting and life-saving potential of early-mortality interventions
Chad Hazlett, Antonio P. Ramos, Stephen Smith
medRxiv 2021.07.20.21260818; doi: https://doi.org/10.1101/2021.07.20.21260818

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Policy
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)