Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Classifying Radiology Abstracts with Deep Learning

Hongyu Chen, View ORCID ProfileGeorge Shih
doi: https://doi.org/10.1101/2021.08.07.21261750
Hongyu Chen
Weill Cornell Medical College
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
George Shih
Weill Cornell Medical College
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for George Shih
  • For correspondence: george{at}cornellradiology.org
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Background The Radiological Society of North America (RSNA) receives more than 8000 abstracts yearly for scientific presentations, scientific posters, and scientific papers. Each abstract is assigned manually one of 16 top-level categories (e.g. “Breast Imaging”) for workflow purposes. Additionally, each abstract receives a grade from 1-10 based on a variety of subjective factors such as style and perceived writing quality. Using machine learning to automate, at least partially, the categorization of abstract submissions can result in saving many hours of manual labor.

Methods A total of 45527 RSNA abstract submissions from 2014 through 2019 were ingested, tokenized, and pre-processed with a standard natural language programming protocol. A bag-of-words (BOW) model was used as a baseline to evaluate two more sophisticated models, convolutional neural networks and recurrent neural networks, and also evaluate an ensemble model featuring all three neural networks.

Results ensemble model was able to achieve 73% testing accuracy for classifying the 16 top-level categories, outperforming all other models. The top model for classifying abstract grade was also an ensemble model, achieving a mean average error (MAE) of 1.01.

Conclusion While the baseline BOW model was the highest performing individual classifier, ensemble models that included state-of-the-art neural networks were able to outperform it. Our research shows that machine learning techniques can, to a reasonable degree of accuracy, predict both objective factors such as abstract category as well as subjective factors such as abstract grade. This work builds upon previous research involving using natural language processing on scientific abstracts to make useful inferences that address a meaningful problem.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

No funding was obtained from any institutions or third parties for this research project.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

This study was IRB exempt from Weill Cornell Medicine.

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Footnotes

  • Edited title.

Data Availability

The data that support the findings of this study are available from RSNA. Restrictions apply to the availability of these data, which were used under license for this study.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted August 09, 2021.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Classifying Radiology Abstracts with Deep Learning
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Classifying Radiology Abstracts with Deep Learning
Hongyu Chen, George Shih
medRxiv 2021.08.07.21261750; doi: https://doi.org/10.1101/2021.08.07.21261750
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Classifying Radiology Abstracts with Deep Learning
Hongyu Chen, George Shih
medRxiv 2021.08.07.21261750; doi: https://doi.org/10.1101/2021.08.07.21261750

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Radiology and Imaging
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)