Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

A linked mixture model of coronary atherosclerosis

View ORCID ProfileBret Beheim
doi: https://doi.org/10.1101/2021.09.13.21263547
Bret Beheim
Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Bret Beheim
  • For correspondence: bret_beheim{at}eva.mpg.de
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Background & Objectives Characterizing the progression of coronary atherosclerosis is a critical public health goal. The most common quantitative summary, the CAC score, is modelled by a variety of statistical methods, both as a predictor of coronary events and as an outcome of behavioral and population-specific risk factors. Little attempt has been made, however, to ground these statistical models in the underlying physiology of arterial aging, which would allow us to describe the onset and growth of CAC over a patient's life.

Methods Using a generative growth model for arterial plaque accumulation, we identify severe under-estimation in the age of initial onset and rate of progression (doubling time) of CAC growth with standard ln(CAC + 1) or ln(CAC | CAC > 0) models, and use this growth model to motivate new statistical approaches to CAC using logistic and log-linear mixture regressions. We compare statistical models directly by computing their average parameter biases using 540 growth trajectory simulations (113,760 patients, 268,200 observations).

Results While all models used can successfully estimate the influence of risk factors with minimal bias, we demonstrate substantial improvements in predictive accuracy in the timing of CAC onset and progression with logistic regression and linked hurdle-lognormal mixture regression, compared with standard ln(CAC + 1) or ln(CAC | CAC > 0) models.

Conclusions Using models that can account for patient-specific onset and progression rates, accurate descriptions of CAC trajectories can be made even in cross-sectional (single scan per patient) designs, with substantial clinical and epidemiological utility.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

No external funding was received.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

This paper uses clinical simulation data to validate statistical models of atherosclerosis, and involves no participants.

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

All statistical models and simulation data and software are available in the following github repository.

https://github.com/babeheim/linked-calcium-growth

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted September 16, 2021.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
A linked mixture model of coronary atherosclerosis
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A linked mixture model of coronary atherosclerosis
Bret Beheim
medRxiv 2021.09.13.21263547; doi: https://doi.org/10.1101/2021.09.13.21263547
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
A linked mixture model of coronary atherosclerosis
Bret Beheim
medRxiv 2021.09.13.21263547; doi: https://doi.org/10.1101/2021.09.13.21263547

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Cardiovascular Medicine
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)