Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Optimizing Social Distancing Policies: A Dynamic Programming Approach for Coupled High and Low Risk Populations

Peng Dai, Raffaele Vardavas, Sarah A. Nowak, Sze-chuan Suen
doi: https://doi.org/10.1101/2021.10.24.21265170
Peng Dai
1Daniel J Epstein Department of Industrial and Systems Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: pengdai{at}usc.edu
Raffaele Vardavas
2RAND Corporation, Los Angeles, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sarah A. Nowak
3Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sze-chuan Suen
1Daniel J Epstein Department of Industrial and Systems Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Background Decision makers may use social distancing to reduce transmission between risk groups in a pandemic scenario like Covid-19. However, it may result in both financial, mental, and social costs. Given these tradeoffs, it is unclear when and who needs to social distance over the course of a pandemic when policies are allowed to change dynamically over time and vary across different risk groups (e.g., older versus younger individuals face different Covid-19 risks). In this study, we examine the optimal time to implement social distancing to optimize social utility, using Covid-19 as an example.

Methodology We propose using a Markov decision process (MDP) model that incorporates transmission dynamics of an age-stratified SEIR compartmental model to identify the optimal social distancing policy for each risk group over time. We parameterize the model using population-based tracking data on Covid-19 within the US. We compare results of two cases: allowing the social distancing policy to vary only over time, or over both time and population (by risk group). To examine the robustness of our results, we perform sensitivity analysis on patient costs, transmission rates, clearance rates, mortality rates.

Results Our model framework can be used to effectively evaluate dynamic policies while disease transmission and progression occurs. When the policy cannot vary by subpopulation, the optimal policy is to implement social distancing for a limited duration at the beginning of the epidemic; when the policy can vary by subpopulation, our results suggest that some subgroups (older adults) may never need to socially distance. This result may occur because older adults occupy a relatively small proportion of the total population and have less contact with others even without social distancing.

Conclusion Our results show that the additional flexibility of allowing social distancing policies to vary over time and across the population can generate substantial utility gain even when only two patient risk groups are considered. MDP frameworks may help generate helpful insights for policymakers. Our results suggest that social distancing for high-contact but low-risk individuals (e.g., such as younger adults) may be more beneficial in some settings than doing so for low-contact but high-risk individuals (e.g., older adults).

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This study did not receive any funding.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

All data produced in the present study are available upon reasonable request to the authors.

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005697

https://www.vtcrc.com/tenant-stories/virginia-bioinformatics-institute/

  • Abbreviations

    MDP
    Markov Decision Process
    homog
    homogeneous
    inhomog
    inhomogeneous
  • Copyright 
    The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
    Back to top
    PreviousNext
    Posted October 26, 2021.
    Download PDF
    Data/Code
    Email

    Thank you for your interest in spreading the word about medRxiv.

    NOTE: Your email address is requested solely to identify you as the sender of this article.

    Enter multiple addresses on separate lines or separate them with commas.
    Optimizing Social Distancing Policies: A Dynamic Programming Approach for Coupled High and Low Risk Populations
    (Your Name) has forwarded a page to you from medRxiv
    (Your Name) thought you would like to see this page from the medRxiv website.
    CAPTCHA
    This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
    Share
    Optimizing Social Distancing Policies: A Dynamic Programming Approach for Coupled High and Low Risk Populations
    Peng Dai, Raffaele Vardavas, Sarah A. Nowak, Sze-chuan Suen
    medRxiv 2021.10.24.21265170; doi: https://doi.org/10.1101/2021.10.24.21265170
    Twitter logo Facebook logo LinkedIn logo Mendeley logo
    Citation Tools
    Optimizing Social Distancing Policies: A Dynamic Programming Approach for Coupled High and Low Risk Populations
    Peng Dai, Raffaele Vardavas, Sarah A. Nowak, Sze-chuan Suen
    medRxiv 2021.10.24.21265170; doi: https://doi.org/10.1101/2021.10.24.21265170

    Citation Manager Formats

    • BibTeX
    • Bookends
    • EasyBib
    • EndNote (tagged)
    • EndNote 8 (xml)
    • Medlars
    • Mendeley
    • Papers
    • RefWorks Tagged
    • Ref Manager
    • RIS
    • Zotero
    • Tweet Widget
    • Facebook Like
    • Google Plus One

    Subject Area

    • Health Policy
    Subject Areas
    All Articles
    • Addiction Medicine (349)
    • Allergy and Immunology (668)
    • Allergy and Immunology (668)
    • Anesthesia (181)
    • Cardiovascular Medicine (2648)
    • Dentistry and Oral Medicine (316)
    • Dermatology (223)
    • Emergency Medicine (399)
    • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
    • Epidemiology (12228)
    • Forensic Medicine (10)
    • Gastroenterology (759)
    • Genetic and Genomic Medicine (4103)
    • Geriatric Medicine (387)
    • Health Economics (680)
    • Health Informatics (2657)
    • Health Policy (1005)
    • Health Systems and Quality Improvement (985)
    • Hematology (363)
    • HIV/AIDS (851)
    • Infectious Diseases (except HIV/AIDS) (13695)
    • Intensive Care and Critical Care Medicine (797)
    • Medical Education (399)
    • Medical Ethics (109)
    • Nephrology (436)
    • Neurology (3882)
    • Nursing (209)
    • Nutrition (577)
    • Obstetrics and Gynecology (739)
    • Occupational and Environmental Health (695)
    • Oncology (2030)
    • Ophthalmology (585)
    • Orthopedics (240)
    • Otolaryngology (306)
    • Pain Medicine (250)
    • Palliative Medicine (75)
    • Pathology (473)
    • Pediatrics (1115)
    • Pharmacology and Therapeutics (466)
    • Primary Care Research (452)
    • Psychiatry and Clinical Psychology (3432)
    • Public and Global Health (6527)
    • Radiology and Imaging (1403)
    • Rehabilitation Medicine and Physical Therapy (814)
    • Respiratory Medicine (871)
    • Rheumatology (409)
    • Sexual and Reproductive Health (410)
    • Sports Medicine (342)
    • Surgery (448)
    • Toxicology (53)
    • Transplantation (185)
    • Urology (165)