Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Machine Learning in the analysis of lethality and evolution of infection by the SARS-CoV-2 virus (COVID-19) in workers of the Mexico City Metro

Eréndira Itzel García Islas, Guillermo de Anda Jáuregui, Joaquín Salas Rodríguez, Florencia Serranía Soto
doi: https://doi.org/10.1101/2021.10.27.21265573
Eréndira Itzel García Islas
1Center for Complexity Sciences, National Autonomous University of Mexico (C3,UNAM)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: eitzelg{at}gmail.com
Guillermo de Anda Jáuregui
2National Institute of Genomic Sciences (INMEGEN)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joaquín Salas Rodríguez
3National Polytechnic Institute (IPN)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Florencia Serranía Soto
4Mexico City Metro (STC-CDMX)
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Article Information

doi 
https://doi.org/10.1101/2021.10.27.21265573
History 
  • November 5, 2021.
Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.

Author Information

  1. Eréndira Itzel García Islas1,*,
  2. Guillermo de Anda Jáuregui2,
  3. Joaquín Salas Rodríguez3 and
  4. Florencia Serranía Soto4
  1. 1Center for Complexity Sciences, National Autonomous University of Mexico (C3,UNAM)
  2. 2National Institute of Genomic Sciences (INMEGEN)
  3. 3National Polytechnic Institute (IPN)
  4. 4Mexico City Metro (STC-CDMX)
  1. ↵*Corresponding author; email: eitzelg{at}gmail.com
Back to top
PreviousNext
Posted November 05, 2021.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Machine Learning in the analysis of lethality and evolution of infection by the SARS-CoV-2 virus (COVID-19) in workers of the Mexico City Metro
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Machine Learning in the analysis of lethality and evolution of infection by the SARS-CoV-2 virus (COVID-19) in workers of the Mexico City Metro
Eréndira Itzel García Islas, Guillermo de Anda Jáuregui, Joaquín Salas Rodríguez, Florencia Serranía Soto
medRxiv 2021.10.27.21265573; doi: https://doi.org/10.1101/2021.10.27.21265573
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Machine Learning in the analysis of lethality and evolution of infection by the SARS-CoV-2 virus (COVID-19) in workers of the Mexico City Metro
Eréndira Itzel García Islas, Guillermo de Anda Jáuregui, Joaquín Salas Rodríguez, Florencia Serranía Soto
medRxiv 2021.10.27.21265573; doi: https://doi.org/10.1101/2021.10.27.21265573

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Informatics
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)