Abstract
Broadly neutralizing antibodies (bNAbs) are promising targets for vaccination and therapy against HIV. Passive infusions of bNAbs have shown promise in clinical trials as a potential alternative for anti-retroviral therapy. A key challenge for the potential clinical application of bnAbs is the suppression of viral escape, which is more effectively achieved with a combination of bNAbs. However, identifying an optimal bNAb cocktail is combinatorially complex. Here, we propose a computational approach to predict the efficacy of a bNAb therapy trial based on the population genetics of HIV escape, which we parametrize using high-throughput HIV sequence data from a cohort of untreated bNAb-naive patients. By quantifying the mutational target size and the fitness cost of HIV-1 escape from bNAbs, we reliably predict the distribution of rebound times in three clinical trials. Importantly, we show that early rebounds are dominated by the pre-treatment standing variation of HIV-1 populations, rather than spontaneous mutations during treatment. Lastly, we show that a cocktail of three bNAbs is necessary to suppress the chances of viral escape below 1%, and we predict the optimal composition of such a bNAb cocktail. Our results offer a rational design for bNAb therapy against HIV-1, and more generally show how genetic data could be used to predict treatment outcomes and design new approaches to pathogenic control.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work has been supported by the NSF CAREER award (grant No: 2045054), DFG grant (SFB1310) for Predictability in Evolution, and the MPRG funding through the Max Planck Society.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The patient sequence data for each trial is available through GeneBank PopSet: 1036347437, and GenBank accession numbers KY323724.1 - KY324834.1, and GenBank accession numbers MH632763 - MH633255.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data produced are available online at https://github.com/StatPhysBio/HIVTreatmentOptimization