Abstract
Here, we developed and validated a highly generalizable natural language processing algorithm based on deep-learning. Our algorithm was trained and tested on a highly diverse dataset from over 2,000 hospital sites and 500 radiologists. The resulting algorithm achieved an AUROC of 0.96 for the presence or absence of liver lesions while achieving a specificity of 0.99 and a sensitivity of 0.6.
Competing Interest Statement
LN and JJ are cofounders of CoRead AI, which owns the intellectual property for the deep-learning algorithms used in this study. KS is an independent contractor for CoRead AI.
Funding Statement
No external funding was provided for this study.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This project was performed with an IRB approval for waiver of consent by an external IRB, Western IRB.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The data from this study is not publicly available.