Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Artificial Intelligence in laryngeal endoscopy: Systematic Review and Meta-Analysis

View ORCID ProfileMichał Żurek, View ORCID ProfileAnna Rzepakowska, Kamil Jasak, Kazimierz Niemczyk
doi: https://doi.org/10.1101/2022.01.16.22269346
Michał Żurek
1Department of Otorhinolaryngology Head and Neck Surgery, Medical University of Warsaw, 1a Banacha Str., 02-097 Warsaw, Poland
2Doctoral School, Medical University of Warsaw, 61 Żwirki i Wigury Str., 02-091 Warsaw, Poland
MD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Michał Żurek
  • For correspondence: mzurek{at}wum.edu.pl
Anna Rzepakowska
1Department of Otorhinolaryngology Head and Neck Surgery, Medical University of Warsaw, 1a Banacha Str., 02-097 Warsaw, Poland
MD, PhD
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Anna Rzepakowska
Kamil Jasak
3Students Scientific Research Group at the Department of Otorhinolaryngology Head and Neck Surgery, Medical University of Warsaw, 1a Banacha Str., 02-097 Warsaw, Poland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kazimierz Niemczyk
1Department of Otorhinolaryngology Head and Neck Surgery, Medical University of Warsaw, 1a Banacha Str., 02-097 Warsaw, Poland
MD
Roles: Professor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

Background Early and proper diagnosis of laryngeal lesions is necessary to begin treatment of the patient as soon as possible with the possibility of preserve organ functions. Imaging examinations are oft aided by artificial intelligence (AI) to improve quality and facilitate appropriate diagnosis. The aim of the study is to investigate of the diagnostic utility of AI in laryngeal endoscopy.

Methods Five electronic databases (PubMed, Embase, Cochrane, Scopus, Web of Science) were searched for studies published before October 15, 2021 implementing artificial intelligence (AI) enhanced models assessing images of laryngeal lesions taken during laryngeal endoscopy. Outcomes were analyzed in terms of accuracy, sensitivity and specificity.

Results All 13 included studies presented overall low risk of bias. The overall accuracy of AI models was very high (from 0.806 to 0.997) and the number of images used to build and evaluate the models ranged from 120 to 24,667. The accuracy was significantly higher in studies using larger database. The pooled sensitivity and specificity for identification of healthy laryngeal tissue (8 studies) was 0.91 (95% CI: 0.83-0.98) and 0.97 (95% CI: 0.96-0.99), respectively. The same values for differentiation between benign and malignant lesions (7 studies) were 0.91 (95% CI: 0.86-0.96) and 0.95 (95% CI: 0.90-0.99), respectively. The analysis was extended to a comparison of sensitivity and specificity of AI models assessing Narrow Band Imaging (3 studies) and white light endoscopy images (4 studies). The results were similar for both methods, no subgroup effect was revealed (p = 0.406 for sensitivity and p = 0.817 for specificity).

Conclusions In assessing images of laryngeal lesions, AI demonstrates extraordinarily high accuracy, sensitivity, and specificity. AI enhanced diagnostic tools should be introduced into everyday clinical work. The performance of AI diagnoses increases efficacy with the size of the image database when using similar standards for evaluating images. The multicentre cooperation should concentrate on creation of huge database of laryngeal lesions images and implement their sharing, which allows building AI modes with the best performance, based on vast amount of images for learning and testing.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This study did not receive any funding

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

All data produced in the present work are contained in the manuscript.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted January 18, 2022.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Artificial Intelligence in laryngeal endoscopy: Systematic Review and Meta-Analysis
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Artificial Intelligence in laryngeal endoscopy: Systematic Review and Meta-Analysis
Michał Żurek, Anna Rzepakowska, Kamil Jasak, Kazimierz Niemczyk
medRxiv 2022.01.16.22269346; doi: https://doi.org/10.1101/2022.01.16.22269346
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Artificial Intelligence in laryngeal endoscopy: Systematic Review and Meta-Analysis
Michał Żurek, Anna Rzepakowska, Kamil Jasak, Kazimierz Niemczyk
medRxiv 2022.01.16.22269346; doi: https://doi.org/10.1101/2022.01.16.22269346

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Otolaryngology
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)