Abstract
Many patients with atrial septal defects (ASD) are asymptomatic and undiagnosed during the first few decades of life, but have overt heart failure, arrhythmias, cerebral infarction, and increased mortality in adults with advancing age. To provide a non-invasive, easy-to-use, and effective method for detecting ASD, we aimed to develop and validate a deep learning-based algorithm to diagnose ASD on chest radiographs. The ASD dataset was created from 173 chest radiographs of 74 patients with ASD and 170 chest radiographs of 100 patients without ASD. Convolutional neural network models (VGG16, ResNet50, DenseNet121, and Xception) for diagnosing ASD were pretrained using two different datasets, the large-scale real-world ImageNet dataset and the ChestX-ray14 dataset released by National Institutes of Health, followed by a round of training using the training set of the ASD dataset. Model performance was evaluated by five-fold stratified cross-validation. The best performance in ImageNet pretraining was achieved by ResNet50 model, and the cross-validation area under the curve (AUC) was 0.95, with sensitivity of 0.86, specificity of 0.87, and overall accuracy of 0.87. The best performance in ChestX-ray pretraining was achieved by Xception, and the cross-validation AUC was 0.93, with sensitivity of 0.85, specificity of 0.85, and overall accuracy of 0.85. The diagnostic performances of these models were comparable to those of cardiologists. Gradient-weighted Class Activation Mapping showed that the ImageNet-pretrained model focused on bilateral hilar regions, while the ChestX-ray14-pretrained model focused on areas around cardiac silhouette and lower lung fields. Our deep learning-based algorithms made a diagnosis of ASD on the input chest radiographs with high accuracy, and had potential to help clinicians make accurate diagnosis of ASD from routine chest radiography, leading to improvement of prognosis and quality of life in patients with ASD.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study did not receive any funding.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The Institutional Review Board of the University of Tokyo gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors.