Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

The accuracy of machine learning models using ultrasound images in prostate cancer diagnosis: A systematic review

View ORCID ProfileRetta C Sihotang, Claudio Agustino, Ficky Huang, Dyandra Parikesit, Fakhri Rahman, View ORCID ProfileAgus Rizal AH Hamid
doi: https://doi.org/10.1101/2022.02.03.22270377
Retta C Sihotang
1Department of Urology, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Retta C Sihotang
Claudio Agustino
1Department of Urology, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ficky Huang
1Department of Urology, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dyandra Parikesit
2Urology Medical Staff Group, Universitas Indonesia Hospital, Universitas Indonesia, Depok, Indonesia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fakhri Rahman
1Department of Urology, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Agus Rizal AH Hamid
1Department of Urology, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo Hospital, Jakarta, Indonesia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Agus Rizal AH Hamid
  • For correspondence: rizalhamid.urology{at}gmail.com
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Data Availability

All relevant data are within the manuscript and its Supporting Information files.

Back to top
PreviousNext
Posted February 05, 2022.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
The accuracy of machine learning models using ultrasound images in prostate cancer diagnosis: A systematic review
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The accuracy of machine learning models using ultrasound images in prostate cancer diagnosis: A systematic review
Retta C Sihotang, Claudio Agustino, Ficky Huang, Dyandra Parikesit, Fakhri Rahman, Agus Rizal AH Hamid
medRxiv 2022.02.03.22270377; doi: https://doi.org/10.1101/2022.02.03.22270377
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
The accuracy of machine learning models using ultrasound images in prostate cancer diagnosis: A systematic review
Retta C Sihotang, Claudio Agustino, Ficky Huang, Dyandra Parikesit, Fakhri Rahman, Agus Rizal AH Hamid
medRxiv 2022.02.03.22270377; doi: https://doi.org/10.1101/2022.02.03.22270377

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Urology
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)