Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Monitoring real-time transmission heterogeneity from Incidence data

View ORCID ProfileYunjun Zhang, Tom Britton, Xiaohua Zhou
doi: https://doi.org/10.1101/2022.04.07.22273591
Yunjun Zhang
1Department of Biostatistics, School of Public Health, Peking University, Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yunjun Zhang
  • For correspondence: yunjun.zhang{at}pku.edu.cn
Tom Britton
2Department of Mathematics, Stockholm University, Stockholm, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xiaohua Zhou
1Department of Biostatistics, School of Public Health, Peking University, Beijing, China
3Beijing International Center for Mathematical Research, Peking University
4School of Mathematical Sciences, Peking University
5Center for Statistical Science, Peking University,Beijing, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

The transmission heterogeneity of an epidemic is associated with a complex mixture of host, pathogen and environmental factors. And it may indicate superspreading events to reduce the efficiency of population-level control measures and to sustain the epidemic over a larger scale and a longer duration. Methods have been proposed to identify significant transmission heterogeneity in historic epidemics based on several data sources, such as contact history, viral genomes and spatial information, which is sophisticated and may not be available, and more importantly ignore the temporal trend of transmission heterogeneity. Here we attempted to establish a convenient method to estimate real-time heterogeneity over an epidemic. Within the branching process framework, we introduced an instant-individualheterogenous infectiousness model to jointly characterized the variation in infectiousness both between individuals and among different times. With this model, we could simultaneously estimate the transmission heterogeneity and the reproduction number from incidence time series. We validated the model with both simulated data and five historic epidemics. Our estimates of the overall and real-time heterogeneities of the five epidemics were consistent with those presented in the literature. Additionally, our model is robust to the ubiquitous bias of under-reporting and misspecification of serial interval. By analyzing the recent data from South Africa, we found evidences that the Omicron might be of more significant transmission heterogeneity than the Delta. Our model based on incidence data was proved to be reliable in estimating the real-time transmission heterogeneity.

Author summary The transmission of many infectious diseases is usually heterogeneous in time and space. Such transmission heterogeneity may indicate superspreading events (where some infected individuals transmit to disproportionately more susceptible than others), reduce the efficiency of the population-level control measures, and sustain the epidemic over a larger scale and a longer duration. Classical methods of monitoring epidemic spread centered on the reproduction number which represent the average transmission potential of the epidemic at the population level, but failed to reflect the systematic variation in transmission. Several recent methods have been proposed to identify significant transmission heterogeneity in the epidemics such as Ebola, MERS, COVID-19. However, these methods are developed based on some sophisticated information such as contact history, viral genome and spatial information, of the confirmed cases, which are typically field-specific and not easy to generalize. In this study, we proposed a simple and generic method of estimating transmission heterogeneity from incidence time series, which provided consistent estimation of heterogeneity with those records with sophisticated data. It also helps in exploring the transmission heterogeneity of the newly emerging variant of Omicron. Our model enhances current understanding of epidemic dynamics, and highlight the potential importance of targeted control measures.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

Y.J.Z and X.H.Z acknowledge support from National Natural Science 489 Foundation of China (Grant number: 82041023), the Bill & Melinda Gates Foundation 490 (Grant number: INV-016826) . T.B. is supported by The Swedish Research Council 491 (grant 2020-04744).

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Footnotes

  • ↵* yunjun.zhang{at}pku.edu.cn, azhou{at}math.pku.edu.cn

Data Availability

All data produced are available online

https://github.com/yunPKU/infer_heterogeneity_from_incidence

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted April 16, 2022.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Monitoring real-time transmission heterogeneity from Incidence data
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Monitoring real-time transmission heterogeneity from Incidence data
Yunjun Zhang, Tom Britton, Xiaohua Zhou
medRxiv 2022.04.07.22273591; doi: https://doi.org/10.1101/2022.04.07.22273591
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Monitoring real-time transmission heterogeneity from Incidence data
Yunjun Zhang, Tom Britton, Xiaohua Zhou
medRxiv 2022.04.07.22273591; doi: https://doi.org/10.1101/2022.04.07.22273591

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Infectious Diseases (except HIV/AIDS)
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)