Abstract
Wastewater-based epidemiology (WBE) has been extensively used during the COVID-19 pandemic to detect and monitor the spread of the SARS-CoV-2 virus and its variants. It has also proven to be an excellent tool to complement and support insights gained from reported clinical data. Globally, many groups have developed bioinformatics pipelines to analyse sequencing data from wastewater. Accurate calling of mutations from RNA extracted from wastewater samples is key in supporting clinical data to make informed decisions on the prevalence of variants, as well as in the use of WBE as a molecular surveillance tool. However, wastewater samples can be challenging to extract and sequence, and performance of variant-calling algorithms in this context has, so far, not been investigated. Analysis of the data and assignment of circulating variants depends heavily on the accuracy of the variant caller, particularly given the degraded nature of the viral RNA and the heterogeneous nature of metagenomic samples. To address this, we compared the performance of six variant callers (VarScan, iVAR, GATK, FreeBayes, LoFreq and BCFtools), used widely in bioinformatics pipelines, on 19 synthetic samples with a known mix of three different SARS-CoV-2 variant genomes (Alpha, Beta and Delta), as well as 13 wastewater samples collected in London between the 15th and 18th December 2021. Using the Quasimodo benchmarking tool to compare the six variant callers, we assessed the fundamental parameters of recall (sensitivity) and precision (specificity) in confirming the presence of a variant within the population.
Our results show that BCFtools, FreeBayes and VarScan called the expected mutations with higher precision and recall than iVAR or GATK, although the latter identified more expected defining mutations. LoFreq gave the least reliable results due to the high number of false positive mutations detected, resulting in lower precision. Similar results were obtained for both the synthetic and wastewater samples.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
Acquisition of the financial support for the project leading to this publication: This work was supported by the UK Health Security Agency, the Natural Environment Research Council (NERC) Environmental Omics Facility (NEOF), and NERC grant NE/V010441/1 to Terry Burke.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors