Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Predicting infectious disease for biopreparedness and response: A systematic review of machine learning and deep learning approaches

View ORCID ProfileRavikiran Keshavamurthy, Samuel Dixon, View ORCID ProfileKarl T. Pazdernik, View ORCID ProfileLauren E. Charles
doi: https://doi.org/10.1101/2022.06.30.22277117
Ravikiran Keshavamurthy
1Pacific Northwest National Laboratory, Richland, WA 99354, USA
2Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ravikiran Keshavamurthy
Samuel Dixon
1Pacific Northwest National Laboratory, Richland, WA 99354, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Karl T. Pazdernik
1Pacific Northwest National Laboratory, Richland, WA 99354, USA
3Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Karl T. Pazdernik
Lauren E. Charles
1Pacific Northwest National Laboratory, Richland, WA 99354, USA
2Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Lauren E. Charles
  • For correspondence: lauren.charles{at}pnnl.gov
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Article usage

Article usage: July 2022 to August 2025

AbstractFullPdf
Jul 20226941273
Aug 2022921321
Sep 20227044
Oct 202261126
Nov 2022591811
Dec 202229155
Jan 202318185
Feb 202321137
Mar 202322188
Apr 202317113
May 202318116
Jun 20231762
Jul 20231044
Aug 202316195
Sep 202316164
Oct 202313108
Nov 202320177
Dec 20231472
Jan 2024746
Feb 20241246
Mar 202411511
Apr 202481016
May 2024957
Jun 2024111212
Jul 202414812
Aug 2024111011
Sep 2024251012
Oct 202415127
Nov 202422120
Dec 20242157
Jan 20251099
Feb 202524299
Mar 2025263612
Apr 202524499
May 2025213912
Jun 2025402914
Jul 2025241523
Aug 2025132
Back to top
PreviousNext
Posted July 02, 2022.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Predicting infectious disease for biopreparedness and response: A systematic review of machine learning and deep learning approaches
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Predicting infectious disease for biopreparedness and response: A systematic review of machine learning and deep learning approaches
Ravikiran Keshavamurthy, Samuel Dixon, Karl T. Pazdernik, Lauren E. Charles
medRxiv 2022.06.30.22277117; doi: https://doi.org/10.1101/2022.06.30.22277117
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Predicting infectious disease for biopreparedness and response: A systematic review of machine learning and deep learning approaches
Ravikiran Keshavamurthy, Samuel Dixon, Karl T. Pazdernik, Lauren E. Charles
medRxiv 2022.06.30.22277117; doi: https://doi.org/10.1101/2022.06.30.22277117

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Infectious Diseases (except HIV/AIDS)
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)