Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Automated large-scale AMD progression prediction using machine-read OCT biomarkers

View ORCID ProfileAkos Rudas, Jeffrey N. Chiang, View ORCID ProfileGiulia Corradetti, Nadav Rakocz, Eran Halperin, View ORCID ProfileSrinivas R. Sadda
doi: https://doi.org/10.1101/2022.08.21.22278906
Akos Rudas
1Department of Computational Medicine, University of California - Los Angeles, Los Angeles, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Akos Rudas
Jeffrey N. Chiang
1Department of Computational Medicine, University of California - Los Angeles, Los Angeles, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Giulia Corradetti
2Doheny Eye Institute, Pasadena, CA
3Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Giulia Corradetti
Nadav Rakocz
4Department of Computer Science, University of California - Los Angeles, Los Angeles, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eran Halperin
1Department of Computational Medicine, University of California - Los Angeles, Los Angeles, CA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Srinivas R. Sadda
2Doheny Eye Institute, Pasadena, CA
3Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Srinivas R. Sadda
  • For correspondence: ssadda{at}doheny.org
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Data Availability

The data are not publicly available due to institutional data use policy and concerns about patient privacy. The data set consists of 14,615 OCT volumes and corresponding electronic health record data collected from 4,182 patients in 2018 at Doheny UCLA Eye Centers. In order to apply for data access, please visit https://doheny.org or reach out to info{at}doheny.org.

https://github.com/Pairas92/AMD-prediction

https://doheny.org

Back to top
PreviousNext
Posted August 22, 2022.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Automated large-scale AMD progression prediction using machine-read OCT biomarkers
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Automated large-scale AMD progression prediction using machine-read OCT biomarkers
Akos Rudas, Jeffrey N. Chiang, Giulia Corradetti, Nadav Rakocz, Eran Halperin, Srinivas R. Sadda
medRxiv 2022.08.21.22278906; doi: https://doi.org/10.1101/2022.08.21.22278906
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Automated large-scale AMD progression prediction using machine-read OCT biomarkers
Akos Rudas, Jeffrey N. Chiang, Giulia Corradetti, Nadav Rakocz, Eran Halperin, Srinivas R. Sadda
medRxiv 2022.08.21.22278906; doi: https://doi.org/10.1101/2022.08.21.22278906

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Ophthalmology
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)