Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Bayesian network enables interpretable and state-of-the-art prediction of immunotherapy responses in cancer patients

Hideki Hozumi, View ORCID ProfileHideyuki Shimizu
doi: https://doi.org/10.1101/2022.11.02.22281835
Hideki Hozumi
1Keio University School of Medicine, Tokyo 160-8582, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hideyuki Shimizu
2Department of AI Systems Medicine, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hideyuki Shimizu
  • For correspondence: h_shimizu.dsc{at}tmd.ac.jp
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Article usage

Article usage: November 2022 to June 2025

AbstractFullPdf
Nov 20224941488
Dec 2022109336
Jan 202395429
Feb 202366423
Mar 202390520
Apr 202370110
May 20232616
Jun 20231736
Jul 20231134
Aug 202316126
Sep 20232644
Oct 20231584
Nov 202330241
Dec 20231935
Jan 20241072
Feb 20241335
Mar 20241575
Apr 2024201920
May 2024935
Jun 202418410
Jul 202411415
Aug 20241109
Sep 202421512
Oct 202412212
Nov 202420721
Dec 202414411
Jan 202513107
Feb 2025221621
Mar 2025284322
Apr 2025283223
May 2025263819
Jun 2025352
Back to top
PreviousNext
Posted November 07, 2022.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Bayesian network enables interpretable and state-of-the-art prediction of immunotherapy responses in cancer patients
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Bayesian network enables interpretable and state-of-the-art prediction of immunotherapy responses in cancer patients
Hideki Hozumi, Hideyuki Shimizu
medRxiv 2022.11.02.22281835; doi: https://doi.org/10.1101/2022.11.02.22281835
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Bayesian network enables interpretable and state-of-the-art prediction of immunotherapy responses in cancer patients
Hideki Hozumi, Hideyuki Shimizu
medRxiv 2022.11.02.22281835; doi: https://doi.org/10.1101/2022.11.02.22281835

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Informatics
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)