ABSTRACT
Background Oral fluid (hereafter, saliva) is a non-invasive and attractive alternative to blood for SARS-CoV-2 IgG testing; however, the heterogeneity of saliva as a matrix poses challenges for immunoassay performance.
Objectives To optimize performance of a magnetic microparticle-based multiplex immunoassay (MIA) for SARS-CoV-2 IgG measurement in saliva, with consideration of: i) threshold setting and validation across different MIA bead batches; ii) sample qualification based on salivary total IgG concentration; iii) calibration to U.S. SARS-CoV-2 serological standard binding antibody units (BAU); and iv) correlations with blood-based SARS-CoV-2 serological and neutralizing antibody (nAb) assays.
Methods The salivary SARS-CoV-2 IgG MIA included 2 nucleocapsid (N), 3 receptor-binding domain (RBD), and 2 spike protein (S) antigens. Gingival crevicular fluid (GCF) swab saliva samples were collected before December, 2019 (n=555) and after molecular test-confirmed SARS-CoV-2 infection from 113 individuals (providing up to 5 repeated-measures; n=398) and used to optimize and validate MIA performance (total n=953). Combinations of IgG responses to N, RBD and S and total salivary IgG concentration (μg/mL) as a qualifier of nonreactive samples were optimized and validated, calibrated to the U.S. SARS-CoV-2 serological standard, and correlated with blood-based SARS-CoV-2 IgG ELISA and nAb assays.
Results The sum of signal to cutoff (S/Co) to all seven MIA SARS-CoV-2 antigens and disqualification of nonreactive saliva samples with ≤15 μg/mL total IgG led to correct classification of 62/62 positives (sensitivity [Se]=100.0%; 95% confidence interval [CI]=94.8%, 100.0%) and 108/109 negatives (specificity [Sp]=99.1%; 95% CI=97.3%, 100.0%) at 8-million beads coupling scale and 80/81 positives (Se=98.8%; 95% CI=93.3%, 100.0%] and 127/127 negatives (Sp=100%; 95% CI=97.1%, 100.0%) at 20-million beads coupling scale. Salivary SARS-CoV-2 IgG crossed the MIA cutoff of 0.1 BAU/mL on average 9 days post-COVID-19 symptom onset and peaked around day 30. Among n=30 matched saliva and plasma samples, salivary SARS-CoV-2 MIA IgG levels correlated with corresponding-antigen plasma ELISA IgG (N: ρ=0.67, RBD: ρ=0.76, S: ρ=0.82; all p<0.0001). Correlations of plasma SARS-CoV-2 nAb assay area under the curve (AUC) with salivary MIA IgG (N: ρ=0.68, RBD: ρ=0.78, S: ρ=0.79; all p<0.0001) and with plasma ELISA IgG (N: ρ=0.76, RBD: ρ=0.79, S: ρ=0.76; p<0.0001) were similar.
Conclusions A salivary SARS-CoV-2 IgG MIA produced consistently high Se (>98.8%) and Sp (>99.1%) across two bead coupling scales and correlations with nAb responses that were similar to blood-based SARS-CoV-2 IgG ELISA data. This non-invasive salivary SARS-CoV-2 IgG MIA could increase engagement of vulnerable populations and improve broad understanding of humoral immunity (kinetics and gaps) within the evolving context of booster vaccination, viral variants and waning immunity.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
Funding for this study was provided by the Johns Hopkins COVID-19 Research Response Program and the FIA Foundation. P.R.R., N.P., K.K., and C.D.H. were supported by a gift from the GRACE Communications Foundation. C.D.H., N.P., and B.D. were additionally supported by National Institute of Allergy and Infectious Diseases (NIAID) grants R21AI139784 and R43AI141265 and National Institute of Environmental Health Sciences (NIEHS) grant R01ES026973. C.D.H. was also supported by NIAID grant R01AI130066 and NIH grant U24OD023382. A.P. and S.L.K. were supported by NIH/ NIAID Center of Excellence in Influenza Research and Surveillance contract HHS N2772201400007C. This work was supported by the Sherrilyn and Ken Fisher Center for Environmental Infectious Diseases Discovery Program and the Johns Hopkins University School of Medicine COVID-19 Research Fund. Y.C.M. received salary support from the National Institutes of Health (grant numbers U54EB007958-12, U5411090366, U54HL143541-02S2, UM1AI068613). The funders had no role in study design, data analysis, decision to publish, or preparation of the manuscript.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The Institutional Review Board of the Johns Hopkins University School of Medicine gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Deidentified research data produced in the present study are available upon reasonable request to the authors.