Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

ChatGPT for Clinical Vignette Generation, Revision, and Evaluation

View ORCID ProfileJames R. A. Benoit
doi: https://doi.org/10.1101/2023.02.04.23285478
James R. A. Benoit
1Faculty of Nursing, University of Alberta, Edmonton Clinic Health Academy, 11405-87 Avenue, University of Alberta, Edmonton, Alberta, Canada, T6G 1C9
2Department of Pediatrics, University of Alberta, Edmonton Clinic Health Academy, 11405-87 Avenue, University of Alberta, Edmonton, Alberta, Canada, T6G 1C9
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for James R. A. Benoit
  • For correspondence: jrbenoit{at}ualberta.ca
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Objective To determine the capabilities of ChatGPT for rapidly generating, rewriting, and evaluating (via diagnostic and triage accuracy) sets of clinical vignettes.

Design We explored the capabilities of ChatGPT for generating and rewriting vignettes. First, we gave it natural language prompts to generate 10 new sets of 10 vignettes, each set for a different common childhood illness. Next, we had it generate 10 sets of 10 vignettes given a set of symptoms from which to draw. We then had it rewrite 15 existing pediatric vignettes at different levels of health literacy. Fourth, we asked it to generate 10 vignettes written as a parent, and rewrite these vignettes as a physician, then at a grade 8 reading level, before rewriting them from the original parent’s perspective. Finally, we evaluated ChatGPT for diagnosis and triage for 45 clinical vignettes previously used for evaluating symptom checkers.

Setting and participants ChatGPT, a publicly available, free chatbot.

Main outcome measures Our main outcomes for de novo vignette generation were whether ChatGPT followed vignette creation instructions consistently, correctly, and listed reasonable symptoms for the disease being described. For generating vignettes from pre-existing symptom sets, we examined whether the symptom sets were used without introducing extra symptoms. Our main outcome for rewriting existing standardized vignettes to match patient demographics, and rewriting vignettes between styles, was whether symptoms were dropped or added outside the original vignette. Finally, our main outcomes examining diagnostic and triage accuracy on 45 standardized patient vignettes were whether the correct diagnosis was listed first, and if the correct triage recommendation was made.

Results ChatGPT was able to quickly produce varied contexts and symptom profiles when writing vignettes based on an illness name, but overused some core disease symptoms. It was able to use given symptom lists as the basis for vignettes consistently, adding one additional (though appropriate) symptom from outside the list for one disease. Pediatric vignettes rewritten at different levels of health literacy showed more complex symptoms being dropped when writing at low health literacy in 87.5% of cases. While writing at high health literacy, it added a diagnosis to 80% of vignettes (91.7% correctly diagnosed). Symptoms were retained in 90% of cases when rewriting vignettes between viewpoints. When presented with 45 vignettes, ChatGPT identified illnesses with 75.6% (95% CI, 62.6% to 88.5%) first-pass diagnostic accuracy and 57.8% (95% CI, 42.9% to 72.7%) triage accuracy. Its use does require monitoring and has caveats, which we discuss.

Conclusions ChatGPT was capable, with caveats and appropriate review, of generating, rewriting, and evaluating clinical vignettes.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

JB is supported by a WCHRI Postdoctoral Fellowship. This WCHRI postdoctoral fellowship award has been funded through the generous support of the Stollery Children's Hospital Foundation through the Women and Children's Health Research Institute. JB is also supported by a Cloud Grant from Oracle for Research. The funders had no role in considering the study design or in the collection, analysis, interpretation of data, writing of the report, or decision to submit the article for publication.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

All data produced in the present study are available upon reasonable request to the authors

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted February 08, 2023.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
ChatGPT for Clinical Vignette Generation, Revision, and Evaluation
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
ChatGPT for Clinical Vignette Generation, Revision, and Evaluation
James R. A. Benoit
medRxiv 2023.02.04.23285478; doi: https://doi.org/10.1101/2023.02.04.23285478
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
ChatGPT for Clinical Vignette Generation, Revision, and Evaluation
James R. A. Benoit
medRxiv 2023.02.04.23285478; doi: https://doi.org/10.1101/2023.02.04.23285478

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Medical Education
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)