Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Deep learning distinguishes focal epilepsy groups using connectomes: Feasibility and clinical implications

Christina Maher, Zihao Tang, Arkiev D’Souza, Mariano Cabezas, Weidong Cai, Michael Barnett, View ORCID ProfileOmid Kavehei, Chenyu Wang, Armin Nikpour
doi: https://doi.org/10.1101/2023.02.09.23285681
Christina Maher
aSchool of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
bBrain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: christina.maher{at}sydney.edu.au
Zihao Tang
bBrain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
dSchool of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Arkiev D’Souza
bBrain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
cTranslational Research Collective, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mariano Cabezas
bBrain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Weidong Cai
dSchool of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael Barnett
bBrain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
eSydney Neuroimaging Analysis Centre, Sydney, NSW, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Omid Kavehei
aSchool of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Omid Kavehei
Chenyu Wang
bBrain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
eSydney Neuroimaging Analysis Centre, Sydney, NSW, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Armin Nikpour
fCentral Clinical School, Faculty of Medicine and Health, Sydney, NSW, Australia
gComprehensive Epilepsy Service and Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

The application of deep learning models to evaluate connectome data is gaining interest in epilepsy research. Deep learning may be a useful initial tool to partition connectome data into network subsets for further analysis. Few prior works have used deep learning to examine structural connectomes from patients with focal epilepsy. We evaluated whether a deep learning model applied to whole-brain connectomes could classify 28 participants with focal epilepsy from 20 controls and identify nodal importance for each group. Participants with epilepsy were further grouped based on whether they had focal seizures that evolved into bilateral tonic-clonic seizures (17 with, 11 without). The trained neural network classified patients from controls with an accuracy of 72.92%, while the seizure subtype groups achieved a classification accuracy of 67.86%. In the patient subgroups, the nodes and edges deemed important for accurate classification were also clinically relevant, indicating the model’s interpretability. The current work expands the evidence for the potential of deep learning to extract relevant markers from clinical datasets. Our findings offer a rationale for further research interrogating structural connectomes to obtain features that can be biomarkers and aid the diagnosis of seizure subtypes.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

The authors acknowledge partial research funding support from UCB Australia Pty Ltd. CM acknowledges scholarship support from the Nerve Research Foundation, University of Sydney. ZT acknowledges the support of the Australian Government Research Training Program (RTP). AD acknowledges funding from St. Vincent's Hospital. OK acknowledges the partial support provided by a SOAR Fellowship from The University of Sydney and the Microsoft AI for Accessibility grant. CW acknowledges research funding from the Nerve Research Foundation, University of Sydney.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

The ethics committee of Royal Prince Alfred Hospital gave ethical approval for this work (RPAH-LHD approval ID: X14-0347).

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

The datasets generated during and/or analysed during the current study are not publicly available because they are from RPAH patients, and access is only authorised for individuals named on the approved ethics application.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted February 10, 2023.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Deep learning distinguishes focal epilepsy groups using connectomes: Feasibility and clinical implications
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Deep learning distinguishes focal epilepsy groups using connectomes: Feasibility and clinical implications
Christina Maher, Zihao Tang, Arkiev D’Souza, Mariano Cabezas, Weidong Cai, Michael Barnett, Omid Kavehei, Chenyu Wang, Armin Nikpour
medRxiv 2023.02.09.23285681; doi: https://doi.org/10.1101/2023.02.09.23285681
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Deep learning distinguishes focal epilepsy groups using connectomes: Feasibility and clinical implications
Christina Maher, Zihao Tang, Arkiev D’Souza, Mariano Cabezas, Weidong Cai, Michael Barnett, Omid Kavehei, Chenyu Wang, Armin Nikpour
medRxiv 2023.02.09.23285681; doi: https://doi.org/10.1101/2023.02.09.23285681

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neurology
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)