Abstract
Background Roughly 17% percent of minors in the United States aged 3 through 17 years have a diagnosis of one or more developmental or psychiatric conditions, with the true prevalence likely being higher due to underdiagnosis in rural areas and for minority populations. Unfortunately, timely diagnostic services are inaccessible to a large portion of the United States and global population due to cost, distance, and clinician availability. Digital phenotyping tools have the potential to shorten the time-to-diagnosis and to bring diagnostic services to more people by enabling accessible evaluations. While automated machine learning (ML) approaches for detection of pediatric psychiatry conditions have garnered increased research attention in recent years, existing approaches use a limited set of social features for the prediction task and focus on a single binary prediction.
Objective I propose the development of a gamified web system for data collection followed by a fusion of novel crowdsourcing algorithms with machine learning behavioral feature extraction approaches to simultaneously predict diagnoses of Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) in a precise and specific manner.
Methods The proposed pipeline will consist of: (1) a gamified web applications to curate videos of social interactions adaptively based on needs of the diagnostic system, (2) behavioral feature extraction techniques consisting of automated ML methods and novel crowdsourcing algorithms, and (3) development of ML models which classify several conditions simultaneously and which adaptively request additional information based on uncertainties about the data.
Conclusions The prospective for high reward stems from the possibility of creating the first AI-powered tool which can identify complex social behaviors well enough to distinguish conditions with nuanced differentiators such as ASD and ADHD.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This research protocol is currently in submission for funding.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
N/A
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
pyw{at}hawaii.edu
Data Availability
There are no data associated with this Research Protocol.