Abstract
The deployment of predictive analytic algorithms that can safely and seamlessly integrate into existing healthcare workflows remains a significant challenge. Here, we present a scalable, cloud-based, fault-tolerant platform that is capable of extracting and processing electronic health record (EHR) data for any patient at any time following admission and transferring results back into the EHR. This platform has been successfully deployed within the UC San Diego Health system and utilizes interoperable data standards to enable portability.
Clinical relevance This platform is currently hosting a deep learning model for the early prediction of sepsis that is operational in two emergency departments.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
S.N. is funded by the National Institutes of Health (#R01LM013998, #R01HL157985, #R35GM143121). He is co-founder of a UCSD start-up, Healcisio Inc., which is focused on commercialization of advanced analytical decision support tools. Mr. Boussina is funded by the National Library of Medicine (#2T15LM011271-11). Dr. Shashikumar has no sources of funding to declare.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The use of de-identified data utilized in this study was approved by the Institutional Review Board (IRB) of UC San Diego (IRB#191098)
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present work are contained in the manuscript.