Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Exploring the Performance and Explainability of BERT for Medical Image Protocol Assignment

Salmonn Talebi, Elizabeth Tong, View ORCID ProfileMohammad R. K. Mofrad
doi: https://doi.org/10.1101/2023.04.20.23288684
Salmonn Talebi
1University of California, Berkeley, Berkeley, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elizabeth Tong
2Stanford University, Stanford, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mohammad R. K. Mofrad
1University of California, Berkeley, Berkeley, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Mohammad R. K. Mofrad
  • For correspondence: mofrad{at}berkeley.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Although deep learning has become state of the art for numerous tasks, it remains untouched for many specialized domains. High stake environments such as medical settings pose more challenges due to trust and safety issues for deep learning algorithms. In this work, we propose to address these issues by evaluating the performance and explanability of a Bidirectional Encoder Representations from Transformers (BERT) model for the task of medical image protocol assignment. Specifically, we evaluate the performance and explainability on this medical image protocol classification task by fine tuning a pre-trained BERT model and measuring the word importance by attributing the classification output to every word through a gradient based method. We then have a trained radiologist review the resulting word importance scores and assess the validity of the model’s decision-making process in comparison to that of a human. Our results indicate that the BERT model is able to identify relevant words that are highly indicative of the target protocol. Furthermore, through the analysis of important words in misclassifications, we are able to reveal potential systematic errors in the model that may be addressed to improve its safety and suitability for use in a clinical setting.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This study did not receive any funding

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

This retrospective study was conducted with the approval of the Stanford Institutional Review Board (IRB) and under a waiver of informed consent. The study was approved for collaboration between Stanford University and the University of California, Berkeley.

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Footnotes

  • stalebi{at}berkeley.edu

  • etong{at}stanford.edu

Data Availability

All data produced in the present work are contained in the manuscript

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted April 25, 2023.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Exploring the Performance and Explainability of BERT for Medical Image Protocol Assignment
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Exploring the Performance and Explainability of BERT for Medical Image Protocol Assignment
Salmonn Talebi, Elizabeth Tong, Mohammad R. K. Mofrad
medRxiv 2023.04.20.23288684; doi: https://doi.org/10.1101/2023.04.20.23288684
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Exploring the Performance and Explainability of BERT for Medical Image Protocol Assignment
Salmonn Talebi, Elizabeth Tong, Mohammad R. K. Mofrad
medRxiv 2023.04.20.23288684; doi: https://doi.org/10.1101/2023.04.20.23288684

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Informatics
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)