Abstract
Purpose To develop an algorithm for automated medical imaging order selection based on provider-input signs and symptoms using natural language processing and machine learning. The aim is to reduce the frequency of inappropriate physician imaging orders, which currently accounts for 25.7% of cases, and thereby mitigate potential patient health concerns.
Materials and Methods The study was conducted retrospectively with a four-step analysis process. The data used for training in the study consisted of anonymized imaging records and associated provider-input symptoms for CT and MRI orders in 40,667 patients from a tertiary children’s hospital. First, the data were normalized using keyword filtering and lemmatization. Second, an entity-embedding ML model converted the symptoms to high-dimensional numerical vectors suitable for model comprehension, which we used to balance the dataset through k-nearest-neighbor-based synthetic sampling. Third, a Support Vector Classifier (ML model) was trained and hyperparameter-tuned using the embedded symptoms to predict modality (CT/MRI), contrast (with/without), and anatomical region (head, neck, etc.) for the imaging orders. Finally, a web application was developed to package the model, which analyzes user-input symptoms and outputs the predicted order.
Results The model was found to have a final overall accuracy of 93.2% on a 4,704-case test set (p < 0.001). The AUCs for the eight classes ranged from 96% to 100%, and the average F1-score was 0.92.
Conclusion This algorithm looks to act as a clinical decision support tool to help augment the present physician imaging order selection accuracy and improve patient health.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study did not receive any funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
IRB of Baylor College of Medicine and Affiliated Hospitals gave ethical approval for this work
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
The re-uploaded final version of the manuscript that was sent for submission in the journal. The word count was reduced, figures improved, and the abstract reformatted.
Data Availability
The data provided in the manuscript is a private dataset from Texas Childrens Hospital not available for request.