Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Improving Genetic Association Studies with a Novel Methodology that Unveils the Hidden Complexity of All-Cause Heart Failure

John T. Gregg, Blanca E. Himes, Folkert W. Asselbergs, Jason H. Moore
doi: https://doi.org/10.1101/2023.08.02.23293567
John T. Gregg
1Department of Biostatistics Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Blanca E. Himes
1Department of Biostatistics Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Folkert W. Asselbergs
2Institute of Cardiovascular Science, University College London, London, England
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jason H. Moore
3Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: Jason.Moore{at}csmc.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Article Information

doi 
https://doi.org/10.1101/2023.08.02.23293567
History 
  • August 4, 2023.
Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.

Author Information

  1. John T. Gregg1,
  2. Blanca E. Himes1,
  3. Folkert W. Asselbergs2 and
  4. Jason H. Moore3,*
  1. 1Department of Biostatistics Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
  2. 2Institute of Cardiovascular Science, University College London, London, England
  3. 3Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
  1. ↵*Correspondence address.
    Jason H.Moore, PhD, FACMI, FIAHSI, FASA, Chair, Department of Computational Biomedicine, Cedars-Sinai, 700 N. San Vicente Blvd., Pacific Design Center Suite G540,West Hollywood CA 90069, USA. Tel: +1-310-423-3521; E-mail: Jason.Moore{at}csmc.edu
Back to top
PreviousNext
Posted August 04, 2023.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Improving Genetic Association Studies with a Novel Methodology that Unveils the Hidden Complexity of All-Cause Heart Failure
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Improving Genetic Association Studies with a Novel Methodology that Unveils the Hidden Complexity of All-Cause Heart Failure
John T. Gregg, Blanca E. Himes, Folkert W. Asselbergs, Jason H. Moore
medRxiv 2023.08.02.23293567; doi: https://doi.org/10.1101/2023.08.02.23293567
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Improving Genetic Association Studies with a Novel Methodology that Unveils the Hidden Complexity of All-Cause Heart Failure
John T. Gregg, Blanca E. Himes, Folkert W. Asselbergs, Jason H. Moore
medRxiv 2023.08.02.23293567; doi: https://doi.org/10.1101/2023.08.02.23293567

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genetic and Genomic Medicine
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)