Abstract
Pediatric patients with sickle cell disease (SCD) have decreased oxygen-carrying capacity in the blood and reduced or restricted cerebral blood flow resulting in neurocognitive deficits and cerebral infarcts. The standard treatment for children with SCD is hydroxyurea; however, the treatment-related neurocognitive effects are unclear. A key area of impairment in SCD is working memory, which is implicated in other cognitive and academic skills. N-back tasks are commonly used to investigate neural correlates of working memory. We analyzed functional magnetic resonance imaging (fMRI) of patients with SCD while they performed n-back tasks by assessing the blood-oxygenation level-dependent (BOLD) signals during working memory processing. Twenty hydroxyurea-treated and 11 control pediatric patients with SCD (7–18 years old) performed 0-, 1-, and 2-back tasks at 2 time points, once before hydroxyurea treatment (baseline) and ∼1 year after treatment (follow-up). Neurocognitive measures (e.g., verbal comprehension, processing speed, full-scale intelligence quotient, etc.) were assessed at both time points. Although no significant changes in behavior performance of n-back tasks and neurocognitive measures were observed in the treated group, we observed a treatment-by-time interaction in the right cuneus and angular gyrus for the 2-> 0-back contrast. Through searchlight-pattern classifications in the treated and control groups to identify changes in brain activation between time points during the 2-back task, we found more brain areas, especially the posterior region, with changes in the pattern and magnitude of BOLD signals in the control group compared to the treated group. In the control group, increases in 2-back BOLD signals were observed in the right crus I cerebellum, right inferior parietal lobe, right inferior temporal lobe, right angular gyrus, left cuneus and left middle frontal gyrus at 1-year follow-up. Moreover, BOLD signals elevated as the working memory load increased from 0- to 1-back but did not increase further from 1- to 2-back in the right inferior temporal lobe, right angular gyrus, and right superior frontal gyrus. These observations may result from increased cognitive effort during working memory processing with no hydroxyurea treatment. In contrast, we found fewer changes in the pattern and magnitude of BOLD signals across time points in the treated group. Furthermore, BOLD signals in the left crus I cerebellum, right angular gyrus, left cuneus and right superior frontal gyrus of the treated group increased continuously with increasing working memory load from 0- to 2-back, potentially related to a broader dynamic range in response to task difficulty and cognitive effort. Collectively, these findings suggest that hydroxyurea treatment helped maintain working memory function in SCD.
Competing Interest Statement
Dr. Akshay Sharma has received consultant fees from Spotlight Therapeutics, Medexus Inc., Vertex Pharmaceuticals, Sangamo Therapeutics, and Editas Medicine. He has also received research funding from CRISPR Therapeutics and honoraria from Vindico Medical Education. Dr. Sharma is the St. Jude Children's Research Hospital site principal investigator of clinical trials for genome editing of sickle cell disease sponsored by Vertex Pharmaceuticals/CRISPR Therapeutics (NCT03745287), Novartis Pharmaceuticals (NCT04443907) and Beam Therapeutics (NCT05456880). The industry sponsors provide funding for the clinical trial, which includes salary support paid to Dr. Sharma's institution. Dr. Sharma has no direct financial interest in these therapies. All other authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Dr. Andrew M. Heitzer has received consulting fees from Global Blood Therapeutics.
Funding Statement
This work was supported by the Cancer Center Support (CORE) grant CA21765 from the National Cancer Institute, grant RR029005 from the National Center for Research Resources, and ALSAC. Andrew M. Heitzer was supported by K23HL166697 (National Heart, Lung, and Blood Institute) during the time of this study.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This study received ethical approval from the St. Jude Children's Research Hospital IRB (Approval SCDMR4) on 05/26/2010.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors