Five dominant dimensions of brain aging are identified via deep learning: associations with clinical, lifestyle, and genetic measures
Zhijian Yang, Junhao Wen, Guray Erus, Sindhuja T. Govindarajan, Randa Melhem, Elizabeth Mamourian, Yuhan Cui, Dhivya Srinivasan, Ahmed Abdulkadir, Paraskevi Parmpi, Katharina Wittfeld, Hans J. Grabe, Robin Bülow, Stefan Frenzel, Duygu Tosun, Murat Bilgel, Yang An, Dahyun Yi, Daniel S. Marcus, Pamela LaMontagne, Tammie L.S. Benzinger, Susan R. Heckbert, Thomas R. Austin, Shari R. Waldstein, Michele K. Evans, Alan B. Zonderman, Lenore J. Launer, Aristeidis Sotiras, Mark A. Espeland, Colin L. Masters, Paul Maruff, Jurgen Fripp, Arthur Toga, Sid O’Bryant, Mallar M. Chakravarty, Sylvia Villeneuve, Sterling C. Johnson, John C. Morris, Marilyn S. Albert, Kristine Yaffe, Henry Völzke, Luigi Ferrucci, Nick R. Bryan, Russell T. Shinohara, Yong Fan, Mohamad Habes, Paris Alexandros Lalousis, Nikolaos Koutsouleris, David A. Wolk, Susan M. Resnick, Haochang Shou, Ilya M. Nasrallah, Christos Davatzikos
doi: https://doi.org/10.1101/2023.12.29.23300642
Zhijian Yang
1Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
2Graduate Group in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, PA, USA
BAJunhao Wen
3Laboratory of AI and Biomedical Science (LABS), Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
PhDGuray Erus
1Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
PhDSindhuja T. Govindarajan
1Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
PhDRanda Melhem
1Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
MSElizabeth Mamourian
1Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
MSYuhan Cui
1Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
MSDhivya Srinivasan
1Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
MSAhmed Abdulkadir
4Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
PhDParaskevi Parmpi
1Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
MSKatharina Wittfeld
5Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany
PhDHans J. Grabe
5Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany
6German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Germany
MDRobin Bülow
7Institute of Diagnostic Radiology and Neuroradiology, University of Greifswald, Germany
MD, PhDStefan Frenzel
5Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Germany
MSDuygu Tosun
8Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
PhDMurat Bilgel
9Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
PhDYang An
9Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
PhDDahyun Yi
10Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, Republic of Korea
PhDDaniel S. Marcus
11Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
PhDPamela LaMontagne
11Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
PhDTammie L.S. Benzinger
11Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
Susan R. Heckbert
12Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, Seattle, WA, USA
MD, PhDThomas R. Austin
12Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, Seattle, WA, USA
PhDShari R. Waldstein
13Department of Psychology, University of Maryland, Baltimore County, Catonsville, MD, USA
PhDMichele K. Evans
14Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
MDAlan B. Zonderman
14Health Disparities Research Section, Laboratory of Epidemiology and Population Sciences, NIA/NIH/IRP, Baltimore, MD, USA
PhDLenore J. Launer
15Neuroepidemiology Section, Intramural Research Program, National Institute on Aging, Bethesda, Maryland, USA
PhDAristeidis Sotiras
16Department of Radiology and Institute of Informatics, Washington University in St. Luis, St. Luis, MO63110, USA
PhDMark A. Espeland
17Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
PhDColin L. Masters
18Florey Institute, The University of Melbourne, Parkville, VIC, 3052, Australia
MDPaul Maruff
18Florey Institute, The University of Melbourne, Parkville, VIC, 3052, Australia
PhDJurgen Fripp
19CSIRO Health and Biosecurity, Australian e-Health Research Centre CSIRO, Brisbane, Queensland, Australia
PhDArthur Toga
20Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
PhDSid O’Bryant
21Institute for Translational Research University of North Texas Health Science Center Fort Worth Texas USA.
PhDMallar M. Chakravarty
22Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Verdun, Quebec, Canada
PhDSylvia Villeneuve
23McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
PhDSterling C. Johnson
24Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
PhDJohn C. Morris
25Knight Alzheimer Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
MDMarilyn S. Albert
26Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
PhDKristine Yaffe
27Departments of Neurology, Psychiatry and Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
MDHenry Völzke
28Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
MD, PhDLuigi Ferrucci
29Translational Gerontology Branch, Longitudinal Studies Section, National Institute on Aging, National Institutes of Health, MedStar Harbor Hospital, 3001 S. Hanover Street, Baltimore, MD, USA
MD, PhDNick R. Bryan
30Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
MDRussell T. Shinohara
1Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
31Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, & Informatics, University of Pennsylvania, Philadelphia, PA, USA
PhDYong Fan
1Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
PhDMohamad Habes
32Biggs Alzheimer’s Institute, University of Texas San Antonio Health Science Center, USA
PhDParis Alexandros Lalousis
33Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
PhDNikolaos Koutsouleris
33Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
34Section for Precision Psychiatry, Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
PhDDavid A. Wolk
35Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
MD, PhDSusan M. Resnick
9Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
PhDHaochang Shou
1Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
31Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, & Informatics, University of Pennsylvania, Philadelphia, PA, USA
PhDIlya M. Nasrallah
1Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
30Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
MD, PhDChristos Davatzikos
1Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Center for and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
PhD
- Supplementary Data[supplements/300642_file02.xlsx]
- Supplementary Information[supplements/300642_file03.pdf]
Posted December 30, 2023.
Five dominant dimensions of brain aging are identified via deep learning: associations with clinical, lifestyle, and genetic measures
Zhijian Yang, Junhao Wen, Guray Erus, Sindhuja T. Govindarajan, Randa Melhem, Elizabeth Mamourian, Yuhan Cui, Dhivya Srinivasan, Ahmed Abdulkadir, Paraskevi Parmpi, Katharina Wittfeld, Hans J. Grabe, Robin Bülow, Stefan Frenzel, Duygu Tosun, Murat Bilgel, Yang An, Dahyun Yi, Daniel S. Marcus, Pamela LaMontagne, Tammie L.S. Benzinger, Susan R. Heckbert, Thomas R. Austin, Shari R. Waldstein, Michele K. Evans, Alan B. Zonderman, Lenore J. Launer, Aristeidis Sotiras, Mark A. Espeland, Colin L. Masters, Paul Maruff, Jurgen Fripp, Arthur Toga, Sid O’Bryant, Mallar M. Chakravarty, Sylvia Villeneuve, Sterling C. Johnson, John C. Morris, Marilyn S. Albert, Kristine Yaffe, Henry Völzke, Luigi Ferrucci, Nick R. Bryan, Russell T. Shinohara, Yong Fan, Mohamad Habes, Paris Alexandros Lalousis, Nikolaos Koutsouleris, David A. Wolk, Susan M. Resnick, Haochang Shou, Ilya M. Nasrallah, Christos Davatzikos
medRxiv 2023.12.29.23300642; doi: https://doi.org/10.1101/2023.12.29.23300642
Five dominant dimensions of brain aging are identified via deep learning: associations with clinical, lifestyle, and genetic measures
Zhijian Yang, Junhao Wen, Guray Erus, Sindhuja T. Govindarajan, Randa Melhem, Elizabeth Mamourian, Yuhan Cui, Dhivya Srinivasan, Ahmed Abdulkadir, Paraskevi Parmpi, Katharina Wittfeld, Hans J. Grabe, Robin Bülow, Stefan Frenzel, Duygu Tosun, Murat Bilgel, Yang An, Dahyun Yi, Daniel S. Marcus, Pamela LaMontagne, Tammie L.S. Benzinger, Susan R. Heckbert, Thomas R. Austin, Shari R. Waldstein, Michele K. Evans, Alan B. Zonderman, Lenore J. Launer, Aristeidis Sotiras, Mark A. Espeland, Colin L. Masters, Paul Maruff, Jurgen Fripp, Arthur Toga, Sid O’Bryant, Mallar M. Chakravarty, Sylvia Villeneuve, Sterling C. Johnson, John C. Morris, Marilyn S. Albert, Kristine Yaffe, Henry Völzke, Luigi Ferrucci, Nick R. Bryan, Russell T. Shinohara, Yong Fan, Mohamad Habes, Paris Alexandros Lalousis, Nikolaos Koutsouleris, David A. Wolk, Susan M. Resnick, Haochang Shou, Ilya M. Nasrallah, Christos Davatzikos
medRxiv 2023.12.29.23300642; doi: https://doi.org/10.1101/2023.12.29.23300642
Subject Area
Subject Areas
- Addiction Medicine (349)
- Allergy and Immunology (668)
- Allergy and Immunology (668)
- Anesthesia (181)
- Cardiovascular Medicine (2648)
- Dermatology (223)
- Emergency Medicine (399)
- Epidemiology (12228)
- Forensic Medicine (10)
- Gastroenterology (759)
- Genetic and Genomic Medicine (4103)
- Geriatric Medicine (387)
- Health Economics (680)
- Health Informatics (2657)
- Health Policy (1005)
- Hematology (363)
- HIV/AIDS (851)
- Medical Education (399)
- Medical Ethics (109)
- Nephrology (436)
- Neurology (3882)
- Nursing (209)
- Nutrition (577)
- Oncology (2030)
- Ophthalmology (585)
- Orthopedics (240)
- Otolaryngology (306)
- Pain Medicine (250)
- Palliative Medicine (75)
- Pathology (473)
- Pediatrics (1115)
- Primary Care Research (452)
- Public and Global Health (6527)
- Radiology and Imaging (1403)
- Respiratory Medicine (871)
- Rheumatology (409)
- Sports Medicine (342)
- Surgery (448)
- Toxicology (53)
- Transplantation (185)
- Urology (165)