Abstract
Background Canada has invested significantly in artificial intelligence (AI) research and development over the last several years. Canadians’ knowledge of and attitudes towards AI in healthcare are understudied.
Objectives To explore the relationships between age, gender, education level, and income on Canadians’ knowledge of AI, their comfort with its use in healthcare, and their comfort with using personal health data in AI research.
Methods Ordinal logistics regression and multivariate polynomial regression were applied to data from the 2021 Canadian Digital Health Survey using RStudio and SigmaZone’s Design of Experiments Pro.
Results Female and older Canadians self-report less knowledge about AI than males and other genders and younger Canadians. Female Canadians and healthcare professionals are less comfortable with use of AI in healthcare compared to males and people with other levels of education. Discomfort appears to stem from concerns about data security and the current maturity level of the technology.
Conclusion Knowledge of AI and the use of AI in healthcare are inversely correlated with age and directly correlated with education and income levels. Overall, female respondents self-reported less knowledge and comfort with AI in healthcare and research than other genders. Privacy concerns should continue to be addressed as a major consideration when implementing AI tools. Canadians, especially older females, not only need more education about AI in healthcare, but also need more reassurance about the safe and responsible use of their data and how bias and other issues with AI are being addressed.
Author Summary Artificial intelligence (AI) and its application has garnered significant public interest and excitement within healthcare in recent years. However, its successful integration and use in healthcare will depend on patient and user adoption. As a result, AI tools may be limited in healthcare when user concerns are not carefully addressed and if patients are not educated about how these technologies work. While there have been studies on the attitudes of clinicians and healthcare professionals toward AI, little is known about the general public’s perception of AI within the healthcare setting. Our study addresses this gap in the literature by analyzing data from the 2021 Canadian Digital Health Survey to understand the relationships between Canadians’ attitudes towards AI and various socioeconomic and demographic factors. Our results found that older Canadians, Canadians with less formal education and women need to be better informed about the safe and responsible use of AI and be reassured about good data security practices before it can be broadly accepted by them. In addition, the element of trust may be a factor that is contributing to the higher levels of discomfort with AI observed in middle-aged Canadians. The findings from this study will help stakeholders better implement and broaden the accessibility of AI technologies.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
The author(s) received no specific funding for this work.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Not Applicable
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Not applicable.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Not Applicable
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Not Applicable
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Not Applicable
Data Availability
The public-use dataset file for the 2021 Canadian Digital Health Survey was accessed using the Borealis data online tool. The file and further information can be obtained here: https://borealisdata.ca/dataverse/canadahealthinfoway