Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

High Throughput Deep Learning Detection of Mitral Regurgitation

Amey Vrudhula, Grant Duffy, View ORCID ProfileMilos Vukadinovic, David Liang, View ORCID ProfileSusan Cheng, View ORCID ProfileDavid Ouyang
doi: https://doi.org/10.1101/2024.02.08.24302547
Amey Vrudhula
aDepartment of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
bIcahn School of Medicine at Mt Sinai, New York, NY
B.S.E.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Grant Duffy
aDepartment of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
B.S.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Milos Vukadinovic
aDepartment of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
cDepartment of Bioengineering, University of California Los Angeles, Los Angeles, CA
B.S.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Milos Vukadinovic
David Liang
dDepartment of Medicine, Division of Cardiology, Stanford University, Palo Alto, CA
M.D., Ph.D.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Susan Cheng
aDepartment of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
M.D., M.M.Sc., M.P.H.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Susan Cheng
David Ouyang
aDepartment of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
eDivision of Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
M.D.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for David Ouyang
  • For correspondence: David.Ouyang{at}cshs.org
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Data Availability

The dataset of videos used in this study is not publicly available due to its potentially identifiable nature.

Back to top
PreviousNext
Posted February 12, 2024.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
High Throughput Deep Learning Detection of Mitral Regurgitation
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
High Throughput Deep Learning Detection of Mitral Regurgitation
Amey Vrudhula, Grant Duffy, Milos Vukadinovic, David Liang, Susan Cheng, David Ouyang
medRxiv 2024.02.08.24302547; doi: https://doi.org/10.1101/2024.02.08.24302547
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
High Throughput Deep Learning Detection of Mitral Regurgitation
Amey Vrudhula, Grant Duffy, Milos Vukadinovic, David Liang, Susan Cheng, David Ouyang
medRxiv 2024.02.08.24302547; doi: https://doi.org/10.1101/2024.02.08.24302547

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Cardiovascular Medicine
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)