Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Methods for cost-efficient, whole genome sequencing surveillance for enhanced detection of outbreaks in a hospital setting

View ORCID ProfileKady D. Waggle, View ORCID ProfileMarissa Pacey Griffith, View ORCID ProfileAlecia B. Rokes, View ORCID ProfileVatsala Rangachar Srinivasa, View ORCID ProfileDeena Ereifej, View ORCID ProfileRose Patrick, View ORCID ProfileHunter Coyle, View ORCID ProfileShurmin Chaudhary, View ORCID ProfileNathan J. Raabe, View ORCID ProfileAlexander J. Sundermann, View ORCID ProfileVaughn S. Cooper, View ORCID ProfileLee H. Harrison, View ORCID ProfileLora Lee Pless
doi: https://doi.org/10.1101/2024.02.16.24302955
Kady D. Waggle
1Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, 3507 Victoria Street, BST-10 E1000-4A, Pittsburgh, Pennsylvania 15213, USA
2Division of Infectious Diseases, University of Pittsburgh School of Medicine, 3550 Terrace Street, 818 Scaife Hall, Pittsburgh, Pennsylvania 15261, USA
4Department of Infectious Diseases, School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, Pennsylvania 15261, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kady D. Waggle
Marissa Pacey Griffith
1Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, 3507 Victoria Street, BST-10 E1000-4A, Pittsburgh, Pennsylvania 15213, USA
2Division of Infectious Diseases, University of Pittsburgh School of Medicine, 3550 Terrace Street, 818 Scaife Hall, Pittsburgh, Pennsylvania 15261, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Marissa Pacey Griffith
Alecia B. Rokes
5Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
6Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Alecia B. Rokes
Vatsala Rangachar Srinivasa
1Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, 3507 Victoria Street, BST-10 E1000-4A, Pittsburgh, Pennsylvania 15213, USA
2Division of Infectious Diseases, University of Pittsburgh School of Medicine, 3550 Terrace Street, 818 Scaife Hall, Pittsburgh, Pennsylvania 15261, USA
3Department of Epidemiology, School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, Pennsylvania 15261, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Vatsala Rangachar Srinivasa
Deena Ereifej
1Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, 3507 Victoria Street, BST-10 E1000-4A, Pittsburgh, Pennsylvania 15213, USA
2Division of Infectious Diseases, University of Pittsburgh School of Medicine, 3550 Terrace Street, 818 Scaife Hall, Pittsburgh, Pennsylvania 15261, USA
3Department of Epidemiology, School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, Pennsylvania 15261, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Deena Ereifej
Rose Patrick
1Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, 3507 Victoria Street, BST-10 E1000-4A, Pittsburgh, Pennsylvania 15213, USA
2Division of Infectious Diseases, University of Pittsburgh School of Medicine, 3550 Terrace Street, 818 Scaife Hall, Pittsburgh, Pennsylvania 15261, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Rose Patrick
Hunter Coyle
1Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, 3507 Victoria Street, BST-10 E1000-4A, Pittsburgh, Pennsylvania 15213, USA
2Division of Infectious Diseases, University of Pittsburgh School of Medicine, 3550 Terrace Street, 818 Scaife Hall, Pittsburgh, Pennsylvania 15261, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hunter Coyle
Shurmin Chaudhary
1Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, 3507 Victoria Street, BST-10 E1000-4A, Pittsburgh, Pennsylvania 15213, USA
2Division of Infectious Diseases, University of Pittsburgh School of Medicine, 3550 Terrace Street, 818 Scaife Hall, Pittsburgh, Pennsylvania 15261, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Shurmin Chaudhary
Nathan J. Raabe
1Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, 3507 Victoria Street, BST-10 E1000-4A, Pittsburgh, Pennsylvania 15213, USA
2Division of Infectious Diseases, University of Pittsburgh School of Medicine, 3550 Terrace Street, 818 Scaife Hall, Pittsburgh, Pennsylvania 15261, USA
3Department of Epidemiology, School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, Pennsylvania 15261, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Nathan J. Raabe
Alexander J. Sundermann
1Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, 3507 Victoria Street, BST-10 E1000-4A, Pittsburgh, Pennsylvania 15213, USA
2Division of Infectious Diseases, University of Pittsburgh School of Medicine, 3550 Terrace Street, 818 Scaife Hall, Pittsburgh, Pennsylvania 15261, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Alexander J. Sundermann
Vaughn S. Cooper
5Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
6Center for Evolutionary Biology and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Vaughn S. Cooper
Lee H. Harrison
1Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, 3507 Victoria Street, BST-10 E1000-4A, Pittsburgh, Pennsylvania 15213, USA
2Division of Infectious Diseases, University of Pittsburgh School of Medicine, 3550 Terrace Street, 818 Scaife Hall, Pittsburgh, Pennsylvania 15261, USA
3Department of Epidemiology, School of Public Health, University of Pittsburgh, 130 De Soto Street, Pittsburgh, Pennsylvania 15261, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Lee H. Harrison
Lora Lee Pless
1Microbial Genomic Epidemiology Laboratory, Center for Genomic Epidemiology, University of Pittsburgh, 3507 Victoria Street, BST-10 E1000-4A, Pittsburgh, Pennsylvania 15213, USA
2Division of Infectious Diseases, University of Pittsburgh School of Medicine, 3550 Terrace Street, 818 Scaife Hall, Pittsburgh, Pennsylvania 15261, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Lora Lee Pless
  • For correspondence: lora.pless{at}pitt.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

2. Abstract

Introduction Outbreaks of healthcare-associated infections (HAI) result in substantial patient morbidity and mortality; mitigation efforts by infection prevention teams have the potential to curb outbreaks and prevent transmission to additional patients. The incorporation of whole genome sequencing (WGS) surveillance of suspected high-risk pathogens often identifies outbreaks that are not detected by traditional infection prevention methods and provides evidence for transmission. Our approach to real-time WGS surveillance, the Enhanced Detection System for Healthcare-Associated Transmission (EDS-HAT), has 1) identified serious outbreaks that were otherwise undetected and 2) shown the potential to be cost saving because HAIs are expensive to treat and WGS has become relatively inexpensive.

Methods We describe a cost-efficient method to perform WGS surveillance and data analysis of pathogens for hospitals that are interested in incorporating WGS surveillance. We provide an overview of the weekly workflow of EDS-HAT, discussing both the laboratory and bioinformatics methods utilized, as well as the costs associated with performing these methods.

Results In an average week at our tertiary healthcare system, we sequenced 48 samples at a cost of less than $100 per sample, inclusive of laboratory reagents and staff salaries. The average turnaround time, from sample collection to data reporting to the infection prevention and control team, was ten days.

Conclusions Our findings demonstrate that performing EDS-HAT in real-time can be both affordable and time-efficient. Providing such timely information to aid in outbreak investigations can identify transmission events sooner and thus increase patient safety.

Impact statement Whole genome sequencing (WGS) surveillance to confirm or refute suspected outbreaks of potential healthcare-associated infections (HAI) is a highly effective approach for outbreak detection. Since November 2021, we have been conducting WGS surveillance in real-time through a program called the Enhanced Detection System for Hospital-Associated Transmission (EDS-HAT), to assist our hospital infection prevention and control (IP&C) team to identify and stop outbreaks. To our knowledge, our laboratory is the only group in the United States that has successfully implemented real-time WGS surveillance of multiple pathogens in the hospital setting. Our weekly workflow includes identifying HAI pathogens and performing WGS, followed by a variety of bioinformatic analyses that include species confirmation, determination of sequence type, and genetic relatedness comparisons. Based on this information, transmission clusters are identified, and the electronic health record is reviewed to determine probable transmission routes. Finally, IP&C implements appropriate interventions to mitigate the spread of infection. We detail the laboratory and analytical methods, along with the cost associated for laboratory materials and staff salary, for successful implementation of WGS surveillance in real-time establishing EDS-HAT as a unique and effective tool to detect HAI outbreaks.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This work was supported by the National Institutes of Health (grant numbers R01AI127472 and R21AI109459).

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

The University of Pittsburgh Institutional Review Board provided ethics approval for EDS-HAT (Protocol: STUDY21040126).

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Data Availability

All data produced in the present study are available upon reasonable request to the authors.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted February 20, 2024.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Methods for cost-efficient, whole genome sequencing surveillance for enhanced detection of outbreaks in a hospital setting
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Methods for cost-efficient, whole genome sequencing surveillance for enhanced detection of outbreaks in a hospital setting
Kady D. Waggle, Marissa Pacey Griffith, Alecia B. Rokes, Vatsala Rangachar Srinivasa, Deena Ereifej, Rose Patrick, Hunter Coyle, Shurmin Chaudhary, Nathan J. Raabe, Alexander J. Sundermann, Vaughn S. Cooper, Lee H. Harrison, Lora Lee Pless
medRxiv 2024.02.16.24302955; doi: https://doi.org/10.1101/2024.02.16.24302955
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Methods for cost-efficient, whole genome sequencing surveillance for enhanced detection of outbreaks in a hospital setting
Kady D. Waggle, Marissa Pacey Griffith, Alecia B. Rokes, Vatsala Rangachar Srinivasa, Deena Ereifej, Rose Patrick, Hunter Coyle, Shurmin Chaudhary, Nathan J. Raabe, Alexander J. Sundermann, Vaughn S. Cooper, Lee H. Harrison, Lora Lee Pless
medRxiv 2024.02.16.24302955; doi: https://doi.org/10.1101/2024.02.16.24302955

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Infectious Diseases (except HIV/AIDS)
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)