Identifying high-risk pre-term pregnancies using the fetal heart rate and machine learning
View ORCID ProfileGabriel Davis Jones, View ORCID ProfileWilliam Cooke, View ORCID ProfileManu Vatish
doi: https://doi.org/10.1101/2024.02.26.24303280
Gabriel Davis Jones
1Nuffield Department of Women’s & Reproductive Health, University of Oxford
2The Alan Turing Institute, London
William Cooke
1Nuffield Department of Women’s & Reproductive Health, University of Oxford
Manu Vatish
1Nuffield Department of Women’s & Reproductive Health, University of Oxford

Article usage
Posted February 27, 2024.
Identifying high-risk pre-term pregnancies using the fetal heart rate and machine learning
Gabriel Davis Jones, William Cooke, Manu Vatish
medRxiv 2024.02.26.24303280; doi: https://doi.org/10.1101/2024.02.26.24303280
Subject Area
Subject Areas
- Addiction Medicine (349)
- Allergy and Immunology (668)
- Allergy and Immunology (668)
- Anesthesia (181)
- Cardiovascular Medicine (2648)
- Dermatology (223)
- Emergency Medicine (399)
- Epidemiology (12228)
- Forensic Medicine (10)
- Gastroenterology (759)
- Genetic and Genomic Medicine (4103)
- Geriatric Medicine (387)
- Health Economics (680)
- Health Informatics (2657)
- Health Policy (1005)
- Hematology (363)
- HIV/AIDS (851)
- Medical Education (399)
- Medical Ethics (109)
- Nephrology (436)
- Neurology (3882)
- Nursing (209)
- Nutrition (577)
- Oncology (2030)
- Ophthalmology (585)
- Orthopedics (240)
- Otolaryngology (306)
- Pain Medicine (250)
- Palliative Medicine (75)
- Pathology (473)
- Pediatrics (1115)
- Primary Care Research (452)
- Public and Global Health (6527)
- Radiology and Imaging (1403)
- Respiratory Medicine (871)
- Rheumatology (409)
- Sports Medicine (342)
- Surgery (448)
- Toxicology (53)
- Transplantation (185)
- Urology (165)