Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Universal Exome Sequencing in Critically Ill Adults: A Diagnostic Yield of 25% and Race-Based Disparities in Access to Genetic Testing

Jessica Gold, Colleen M. Kripke, Regeneron Genetics Center, Penn Medicine BioBank, View ORCID ProfileTheodore G. Drivas
doi: https://doi.org/10.1101/2024.03.11.24304088
Jessica Gold
1Division of Clinical Genetics, Department of Pediatrics, Northwell Health, Great Neck, NY 11021, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Colleen M. Kripke
2Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19194, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Theodore G. Drivas
2Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19194, USA
3Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19194, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Theodore G. Drivas
  • For correspondence: theodore.drivas{at}pennmedicine.upenn.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

Numerous studies have underscored the diagnostic and therapeutic potential of exome or genome sequencing in critically ill pediatric populations. However, an equivalent investigation in critically ill adults remains conspicuously absent. We retrospectively analyzed whole exome sequencing (WES) data available through the PennMedicine Biobank (PMBB) from all 365 young adult patients, aged 18-40 years, with intensive care unit (ICU) admissions at the University of Pennsylvania Health System who met inclusion criteria for our study. For each participant, two Medical Genetics and Internal Medicine-trained clinicians reviewed WES reports and patient charts for variant classification, result interpretation, and identification of genetic diagnoses related to their critical illness.

Of the 365 individuals in our study, 90 (24.7%) were found to have clearly diagnostic results on WES; an additional 40 (11.0%) had a suspicious variant of uncertain significance (VUS) identified; and an additional 16 (4.4%) had a medically actionable incidental finding. The diagnostic rate of exome sequencing did not decrease with increasing patient age. Affected genes were primarily involved in cardiac function (18.8%), vascular health (16.7%), cancer (16.7%), and pulmonary disease (11.5%). Only half of all diagnostic findings were known and documented in the patient chart at the time of ICU admission. Significant disparities emerged in subgroup analysis by EHR-reported race, with genetic diagnoses known/documented for 63.5% of White patients at the time of ICU admission but only for 28.6% of Black or Hispanic patients. There was a trend towards patients with undocumented genetic diagnoses having a 66% increased mortality rate, making these race-based disparities in genetic diagnosis even more concerning. Altogether, universal exome sequencing in ICU-admitted adult patients was found to yield a new definitive diagnosis in 11.2% of patients. Of these diagnoses, 76.6% conferred specific care-altering medical management recommendations.

Our study suggests that the diagnostic utility of exome sequencing in critically ill young adults is similar to that observed in neonatal and pediatric populations and is age-independent. The high diagnostic rate and striking race-based disparities we find in genetic diagnoses argue for broad and universal approaches to genetic testing for critically ill adults. The widespread implementation of comprehensive genetic sequencing in the adult population promises to enhance medical care for all individuals and holds the potential to rectify disparities in genetic testing referrals, ultimately promoting more equitable healthcare delivery.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This study did not receive any funding.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

The Institutional Review Board (IRB) of the University of Pennsylvania have ethical approval for this work under protocol #854452.

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Footnotes

  • We have updated the Penn Medicine BioBank Banner Author List and Contribution Statements with the most current version, and have updated the Acknowledgment section.

Data Availability

All summary and aggregate data produced in the present study are available upon reasonable request to the authors. Individual-level genetic data cannot be shared due to concerns for patient privacy.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted April 01, 2024.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Universal Exome Sequencing in Critically Ill Adults: A Diagnostic Yield of 25% and Race-Based Disparities in Access to Genetic Testing
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Universal Exome Sequencing in Critically Ill Adults: A Diagnostic Yield of 25% and Race-Based Disparities in Access to Genetic Testing
Jessica Gold, Colleen M. Kripke, Regeneron Genetics Center, Penn Medicine BioBank, Theodore G. Drivas
medRxiv 2024.03.11.24304088; doi: https://doi.org/10.1101/2024.03.11.24304088
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Universal Exome Sequencing in Critically Ill Adults: A Diagnostic Yield of 25% and Race-Based Disparities in Access to Genetic Testing
Jessica Gold, Colleen M. Kripke, Regeneron Genetics Center, Penn Medicine BioBank, Theodore G. Drivas
medRxiv 2024.03.11.24304088; doi: https://doi.org/10.1101/2024.03.11.24304088

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genetic and Genomic Medicine
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)