Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Integrating Real-Time Location Systems with Electronic Medical Records: A Machine Learning Approach for In-Hospital Fall Risk Prediction

View ORCID ProfileDong Won Kim, View ORCID ProfileJihoon Seo, View ORCID ProfileSujin Kwon, View ORCID ProfileChan Min Park, View ORCID ProfileChangho Han, View ORCID ProfileYujeong Kim, View ORCID ProfileDukyong Yoon, View ORCID ProfileKyoung Min Kim
doi: https://doi.org/10.1101/2024.03.11.24304095
Dong Won Kim
1Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Dong Won Kim
Jihoon Seo
1Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jihoon Seo
Sujin Kwon
3Department of Endocrinology, Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sujin Kwon
Chan Min Park
1Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Chan Min Park
Changho Han
1Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Changho Han
Yujeong Kim
1Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yujeong Kim
Dukyong Yoon
1Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
2Institute for Innovation in Digital Healthcare, Severance Hospital, Seoul, Republic of Korea
4Center for Digital Health, Yongin Severance Hospital, Yonsei University Health System, Yongin, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Dukyong Yoon
  • For correspondence: kyoungmin.kim{at}yonsei.ac.kr dukyong.yoon{at}yonsei.ac.kr
Kyoung Min Kim
3Department of Endocrinology, Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Republic of Korea
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kyoung Min Kim
  • For correspondence: kyoungmin.kim{at}yonsei.ac.kr dukyong.yoon{at}yonsei.ac.kr
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

Hospital falls are the most prevalent adverse event in healthcare, posing significant risks to patient health outcomes and institutional care quality. The effectiveness of several fall prediction models currently in use is limited by various clinical factors. This study explored the efficacy of merging real-time location system (RTLS) data with clinical information to enhance the accuracy of in-hospital fall predictions. The model performances were compared based on the clinical data, RTLS data, and a hybrid approach using various evaluation metrics. The RTLS and integrated clinical data were obtained from 22,201 patients between March 2020 and June 2022. From the initial cohort, 118 patients with falls and 443 patients without falls were included. Predictive models were developed using the XGBoost algorithm across three distinct frameworks: clinical model, RTLS model, and clinical + RTLS model. The model performance was evaluated using metrics, such as AUROC, AUPRC, accuracy, PPV, sensitivity, specificity, and F1 score. Shapley additive explanation values were used to enhance the model interpretability. The clinical model yielded an AUROC of 0.813 and AUPRC of 0.407. The RTLS model demonstrated superior fall prediction capabilities, with an AUROC of 0.842 and AUPRC of 0.480. The clinical + RTLS model excelled further, achieving an AUROC of 0.853 and AUPRC of 0.497. Feature importance analysis revealed that movement patterns of patients on the last day of their stay were significantly associated with falls, together with elevated RDW levels, sedative administration, age. This study underscored the advantages of combining RTLS data with clinical information to predict in-hospital falls more accurately. This innovative technology-driven approach may enhance early fall risk detection during hospitalization, potentially preventing falls, improving patient safety, and contributing to more efficient healthcare delivery.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health and Welfare, Republic of Korea (grant number: HI22C0452). And this work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (RS-2023-00253897) and grand funded by the Ministry of Education (2021R1I1A1A01060333).

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

This study was approved by the Institutional Review Board of Yonsei University Severance Hospital (No. 9-2021-0037).

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Data availability

The datasets used and/or analyzed in the current study are available from the corresponding author upon reasonable request.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted March 15, 2024.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Integrating Real-Time Location Systems with Electronic Medical Records: A Machine Learning Approach for In-Hospital Fall Risk Prediction
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Integrating Real-Time Location Systems with Electronic Medical Records: A Machine Learning Approach for In-Hospital Fall Risk Prediction
Dong Won Kim, Jihoon Seo, Sujin Kwon, Chan Min Park, Changho Han, Yujeong Kim, Dukyong Yoon, Kyoung Min Kim
medRxiv 2024.03.11.24304095; doi: https://doi.org/10.1101/2024.03.11.24304095
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Integrating Real-Time Location Systems with Electronic Medical Records: A Machine Learning Approach for In-Hospital Fall Risk Prediction
Dong Won Kim, Jihoon Seo, Sujin Kwon, Chan Min Park, Changho Han, Yujeong Kim, Dukyong Yoon, Kyoung Min Kim
medRxiv 2024.03.11.24304095; doi: https://doi.org/10.1101/2024.03.11.24304095

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Informatics
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)