Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Linking regulatory variants to target genes by integrating single-cell multiome methods and genomic distance

View ORCID ProfileElizabeth Dorans, View ORCID ProfileKarthik Jagadeesh, View ORCID ProfileKushal Dey, View ORCID ProfileAlkes L. Price
doi: https://doi.org/10.1101/2024.05.24.24307813
Elizabeth Dorans
1Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
2PhD Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Elizabeth Dorans
Karthik Jagadeesh
1Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
3Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Karthik Jagadeesh
Kushal Dey
4Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kushal Dey
  • For correspondence: elizabethdorans{at}g.harvard.edu deyk{at}mskcc.edu aprice{at}hsph.harvard.edu
Alkes L. Price
1Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
3Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
5Department of Biostatistics, Harvard T.H. School of Public Health, Boston, MA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Alkes L. Price
  • For correspondence: elizabethdorans{at}g.harvard.edu deyk{at}mskcc.edu aprice{at}hsph.harvard.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

Methods that analyze single-cell paired RNA-seq and ATAC-seq multiome data have shown great promise in linking regulatory elements to genes. However, existing methods differ in their modeling assumptions and approaches to account for biological and technical noise—leading to low concordance in their linking scores—and do not capture the effects of genomic distance. We propose pgBoost, an integrative modeling framework that trains a non-linear combination of existing linking strategies (including genomic distance) on fine-mapped eQTL data to assign a probabilistic score to each candidate SNP-gene link. We applied pgBoost to single-cell multiome data from 85k cells representing 6 major immune/blood cell types. pgBoost attained higher enrichment for fine-mapped eSNP-eGene pairs (e.g. 21x at distance >10kb) than existing methods (1.2-10x; p-value for difference = 5e-13 vs. distance-based method and < 4e-35 for each other method), with larger improvements at larger distances (e.g. 35x vs. 0.89-6.6x at distance >100kb; p-value for difference < 0.002 vs. each other method). pgBoost also outperformed existing methods in enrichment for CRISPR-validated links (e.g. 4.8x vs. 1.6-4.1x at distance >10kb; p-value for difference = 0.25 vs. distance-based method and < 2e-5 for each other method), with larger improvements at larger distances (e.g. 15x vs. 1.6-2.5x at distance >100kb; p-value for difference < 0.009 for each other method). Similar improvements in enrichment were observed for links derived from Activity-By-Contact (ABC) scores and GWAS data. We further determined that restricting pgBoost to features from a focal cell type improved the identification of SNP-gene links relevant to that cell type. We highlight several examples where pgBoost linked fine-mapped GWAS variants to experimentally validated or biologically plausible target genes that were not implicated by other methods. In conclusion, a non-linear combination of linking strategies, including genomic distance, improves power to identify target genes underlying GWAS associations.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This research was funded by NIH grants U01 HG012009, R56 HG013083, R01 MH101244, R37 MH107649, R01 HG006399, and R01 MH115676.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Data Availability

All single-cell multiome data sets analyzed are publicly available. The 10x PBMC data set is available at https://www.10xgenomics.com/datasets. The Luecken BMMC and SHARE-Seq LCL data sets are available at Gene Expression Omnibus (accession codes GSE194122 and GSE140203, respectively).

Linking scores and percentiles for pgBoost and constituent methods have been made publicly available at 10.5281/zenodo.11211926.

Fine-mapped eQTL data from ref.34 are available at https://www.finucanelab.org/data.

ABC scores are available on the ENCODE portal (https://www.encodeproject.org/).

Biosample IDs and file accessions are listed in Supplementary Table 7.

The CRISPR data set is available at https://github.com/EngreitzLab/CRISPR_comparison/blob/ main/resources/crispr_data/EPCrisprBenchmark_ensemble_data_GRCh38.tsv.gz.

GWAS-derived SNP-gene links from ref.43 are available at https://github.com/Deylab999/GWAS_benchmark_IGVF/blob/main/UKBiobank.ABCGene.anyabc.tsv.

GWAS fine-mapping results from ref.44 are available at https://www.finucanelab.org/data.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted May 25, 2024.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Linking regulatory variants to target genes by integrating single-cell multiome methods and genomic distance
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Linking regulatory variants to target genes by integrating single-cell multiome methods and genomic distance
Elizabeth Dorans, Karthik Jagadeesh, Kushal Dey, Alkes L. Price
medRxiv 2024.05.24.24307813; doi: https://doi.org/10.1101/2024.05.24.24307813
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Linking regulatory variants to target genes by integrating single-cell multiome methods and genomic distance
Elizabeth Dorans, Karthik Jagadeesh, Kushal Dey, Alkes L. Price
medRxiv 2024.05.24.24307813; doi: https://doi.org/10.1101/2024.05.24.24307813

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genetic and Genomic Medicine
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)