Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Multi-task Bayesian Model Combining FDG-PET/CT Imaging and Clinical Data for Interpretable High-Grade Prostate Cancer Prognosis

View ORCID ProfileMaxence Larose, View ORCID ProfileLouis Archambault, View ORCID ProfileNawar Touma, Raphaël Brodeur, Félix Desroches, Nicolas Raymond, Daphnée Bédard-Tremblay, Danahé LeBlanc, Fatemeh Rasekh, Hélène Hovington, Bertrand Neveu, View ORCID ProfileMartin Vallières, Frédéric Pouliot
doi: https://doi.org/10.1101/2024.06.19.24308396
Maxence Larose
1Département de physique, de génie physique et d’optique, et Centre de recherche sur le cancer, Université Laval, Québec (QC), Canada
2CHU de Québec – Université Laval et CRCHU de Québec, Québec (QC), Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Maxence Larose
Louis Archambault
1Département de physique, de génie physique et d’optique, et Centre de recherche sur le cancer, Université Laval, Québec (QC), Canada
2CHU de Québec – Université Laval et CRCHU de Québec, Québec (QC), Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Louis Archambault
  • For correspondence: louis.archambault{at}phy.ulaval.ca martin.vallieres{at}usherbrooke.ca frederic.pouliot{at}fmed.ulaval.ca
Nawar Touma
2CHU de Québec – Université Laval et CRCHU de Québec, Québec (QC), Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Nawar Touma
Raphaël Brodeur
1Département de physique, de génie physique et d’optique, et Centre de recherche sur le cancer, Université Laval, Québec (QC), Canada
2CHU de Québec – Université Laval et CRCHU de Québec, Québec (QC), Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Félix Desroches
1Département de physique, de génie physique et d’optique, et Centre de recherche sur le cancer, Université Laval, Québec (QC), Canada
2CHU de Québec – Université Laval et CRCHU de Québec, Québec (QC), Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nicolas Raymond
3Department of Computer Science, Université de Sherbrooke, Sherbrooke (QC), Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daphnée Bédard-Tremblay
2CHU de Québec – Université Laval et CRCHU de Québec, Québec (QC), Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Danahé LeBlanc
1Département de physique, de génie physique et d’optique, et Centre de recherche sur le cancer, Université Laval, Québec (QC), Canada
2CHU de Québec – Université Laval et CRCHU de Québec, Québec (QC), Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fatemeh Rasekh
2CHU de Québec – Université Laval et CRCHU de Québec, Québec (QC), Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hélène Hovington
2CHU de Québec – Université Laval et CRCHU de Québec, Québec (QC), Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bertrand Neveu
2CHU de Québec – Université Laval et CRCHU de Québec, Québec (QC), Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Martin Vallières
3Department of Computer Science, Université de Sherbrooke, Sherbrooke (QC), Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Martin Vallières
  • For correspondence: louis.archambault{at}phy.ulaval.ca martin.vallieres{at}usherbrooke.ca frederic.pouliot{at}fmed.ulaval.ca
Frédéric Pouliot
2CHU de Québec – Université Laval et CRCHU de Québec, Québec (QC), Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: louis.archambault{at}phy.ulaval.ca martin.vallieres{at}usherbrooke.ca frederic.pouliot{at}fmed.ulaval.ca
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

We propose a fully automatic multi-task Bayesian model, named Bayesian Sequential Network (BSN), for predicting high-grade (Gleason ≥ 8) prostate cancer (PCa) prognosis using pre-prostatectomy FDG-PET/CT images and clinical data. BSN performs one classification task and five survival tasks: predicting lymph node invasion (LNI), biochemical recurrence-free survival (BCR-FS), metastasis-free survival, definitive androgen deprivation therapy-free survival, castration-resistant PCa-free survival, and PCa-specific survival (PCSS). Experiments are conducted using a dataset of 295 patients. BSN outperforms widely used nomograms on all tasks except PCSS, leveraging multi-task learning and imaging data. BSN also provides automated prostate segmentation, uncertainty quantification, personalized feature-based explanations, and introduces dynamic predictions, a novel approach that relies on short-term outcomes to refine long-term prognosis. Overall, BSN shows great promise in its ability to exploit imaging and clinico-pathological data to predict poor outcome patients that need treatment intensification with loco-regional or systemic adjuvant therapy for high-risk PCa.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), Fonds de recherche en Sante du Quebec, the Fonds de recherche du Quebec (FRQNT) and Fondation du CHU de Quebec.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

The research protocol was approved by the Ethical committee of CHU de Quebec-Universite Laval Hospital, Quebec City, Quebec, Canada (IRB # 2018-3667).

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Data Availability

Due to participant confidentiality and privacy concerns, data are available upon reasonable written request to louis.archambault{at}phy.ulaval.ca.

https://github.com/MedPhysUL/ProstateCancerPrognosisAI

https://github.com/MedPhysUL/delia

https://github.com/MedPhysUL/prostate-nomograms

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted June 20, 2024.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Multi-task Bayesian Model Combining FDG-PET/CT Imaging and Clinical Data for Interpretable High-Grade Prostate Cancer Prognosis
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Multi-task Bayesian Model Combining FDG-PET/CT Imaging and Clinical Data for Interpretable High-Grade Prostate Cancer Prognosis
Maxence Larose, Louis Archambault, Nawar Touma, Raphaël Brodeur, Félix Desroches, Nicolas Raymond, Daphnée Bédard-Tremblay, Danahé LeBlanc, Fatemeh Rasekh, Hélène Hovington, Bertrand Neveu, Martin Vallières, Frédéric Pouliot
medRxiv 2024.06.19.24308396; doi: https://doi.org/10.1101/2024.06.19.24308396
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Multi-task Bayesian Model Combining FDG-PET/CT Imaging and Clinical Data for Interpretable High-Grade Prostate Cancer Prognosis
Maxence Larose, Louis Archambault, Nawar Touma, Raphaël Brodeur, Félix Desroches, Nicolas Raymond, Daphnée Bédard-Tremblay, Danahé LeBlanc, Fatemeh Rasekh, Hélène Hovington, Bertrand Neveu, Martin Vallières, Frédéric Pouliot
medRxiv 2024.06.19.24308396; doi: https://doi.org/10.1101/2024.06.19.24308396

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Oncology
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)