Predicting IVF live birth probabilities using machine learning, center-specific and national registry-based models
Elizabeth T. Nguyen, Matthew G. Retzloff, L. April Gago, John E. Nichols, John F. Payne, Barry A. Ripps, Michael Opsahl, Jeremy Groll, Ronald Beesley, Lorie Nowak, Gregory Neal, Jaye Adams, Trevor Swanson, Xiaocong Chen, View ORCID ProfileMylene W. M. Yao
doi: https://doi.org/10.1101/2024.06.20.24308970
Elizabeth T. Nguyen
aR&D Department, Univfy, Los Altos, CA, US
PhDMatthew G. Retzloff
bFertility Center of San Antonio, San Antonio, TX, US
MDL. April Gago
cGago Center for Fertility, Brighton, MI, US
MDJohn E. Nichols
dPiedmont Reproductive Endocrinology Group, Greenville, SC, US
MDJohn F. Payne
dPiedmont Reproductive Endocrinology Group, Greenville, SC, US
MDBarry A. Ripps
eNewLIFE Fertility, Pensacola, FL, US
MDMichael Opsahl
fPoma Fertility, Kirkland, WA, US
MDJeremy Groll
gSpringCreek Fertility, Dayton, OH, US
MDRonald Beesley
fPoma Fertility, Kirkland, WA, US
MDLorie Nowak
gSpringCreek Fertility, Dayton, OH, US
PhDGregory Neal
bFertility Center of San Antonio, San Antonio, TX, US
MDJaye Adams
bFertility Center of San Antonio, San Antonio, TX, US
MDTrevor Swanson
aR&D Department, Univfy, Los Altos, CA, US
PhDXiaocong Chen
aR&D Department, Univfy, Los Altos, CA, US
MScMylene W. M. Yao
aR&D Department, Univfy, Los Altos, CA, US
MD
Data Availability
Raw data are not available for sharing with other researchers. However, we can support or collaborate with other researchers to apply similar methods to test other researchers' data.
Posted June 21, 2024.
Predicting IVF live birth probabilities using machine learning, center-specific and national registry-based models
Elizabeth T. Nguyen, Matthew G. Retzloff, L. April Gago, John E. Nichols, John F. Payne, Barry A. Ripps, Michael Opsahl, Jeremy Groll, Ronald Beesley, Lorie Nowak, Gregory Neal, Jaye Adams, Trevor Swanson, Xiaocong Chen, Mylene W. M. Yao
medRxiv 2024.06.20.24308970; doi: https://doi.org/10.1101/2024.06.20.24308970
Predicting IVF live birth probabilities using machine learning, center-specific and national registry-based models
Elizabeth T. Nguyen, Matthew G. Retzloff, L. April Gago, John E. Nichols, John F. Payne, Barry A. Ripps, Michael Opsahl, Jeremy Groll, Ronald Beesley, Lorie Nowak, Gregory Neal, Jaye Adams, Trevor Swanson, Xiaocong Chen, Mylene W. M. Yao
medRxiv 2024.06.20.24308970; doi: https://doi.org/10.1101/2024.06.20.24308970
Subject Area
Subject Areas
- Addiction Medicine (349)
- Allergy and Immunology (668)
- Allergy and Immunology (668)
- Anesthesia (181)
- Cardiovascular Medicine (2648)
- Dermatology (223)
- Emergency Medicine (399)
- Epidemiology (12228)
- Forensic Medicine (10)
- Gastroenterology (759)
- Genetic and Genomic Medicine (4103)
- Geriatric Medicine (387)
- Health Economics (680)
- Health Informatics (2657)
- Health Policy (1005)
- Hematology (363)
- HIV/AIDS (851)
- Medical Education (399)
- Medical Ethics (109)
- Nephrology (436)
- Neurology (3882)
- Nursing (209)
- Nutrition (577)
- Oncology (2030)
- Ophthalmology (585)
- Orthopedics (240)
- Otolaryngology (306)
- Pain Medicine (250)
- Palliative Medicine (75)
- Pathology (473)
- Pediatrics (1115)
- Primary Care Research (452)
- Public and Global Health (6527)
- Radiology and Imaging (1403)
- Respiratory Medicine (871)
- Rheumatology (409)
- Sports Medicine (342)
- Surgery (448)
- Toxicology (53)
- Transplantation (185)
- Urology (165)