Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

The Complex Interplay Between Risk Tolerance and the Spread of Infectious Diseases

View ORCID ProfileMaximilian Nguyen, View ORCID ProfileAri Freedman, View ORCID ProfileMatthew Cheung, View ORCID ProfileChadi Saad-Roy, View ORCID ProfileBaltazar Espinoza, View ORCID ProfileBryan Grenfell, View ORCID ProfileSimon Levin
doi: https://doi.org/10.1101/2024.07.01.24309771
Maximilian Nguyen
1Lewis-Sigler Institute, Princeton University, Princeton, NJ 08544
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Maximilian Nguyen
  • For correspondence: mmnguyen{at}princeton.edu
Ari Freedman
2Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ari Freedman
Matthew Cheung
3Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Matthew Cheung
Chadi Saad-Roy
4Miller Institute for Basic Research in Science, Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Chadi Saad-Roy
Baltazar Espinoza
5Biocomplexity Institute, University of Virginia, Charlottesville, VA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Baltazar Espinoza
Bryan Grenfell
2Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Bryan Grenfell
Simon Levin
2Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Simon Levin
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Risk-driven behavior provides a feedback mechanism through which individuals both shape and are collectively affected by an epidemic. We introduce a general and flexible compartmental model to study the effect of heterogeneity in the population with regards to risk tolerance. The interplay between behavior and epidemiology leads to a rich set of possible epidemic dynamics. Depending on the behavioral composition of the population, we find that increasing heterogeneity in risk tolerance can either increase or decrease the epidemic size. We find that multiple waves of infection can arise due to the interplay between transmission and behavior, even without the replenishment of susceptibles. We find that increasing protective mechanisms such as the effectiveness of interventions, the number of risk-averse people in the population, and the duration of intervention usage reduces the epidemic overshoot. When the protection is pushed past a critical threshold, the epidemic dynamics enter an underdamped regime where the epidemic size exactly equals the herd immunity threshold. Lastly, we can find regimes where epidemic size does not monotonically decrease with a population that becomes increasingly risk-averse.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

M.M.N., A.S.F., M.A.C., and S.A.L. would like to acknowledge funding from NSF (CCF1917819, CNS-2041952, DMS-2327711), Army Research Office (W911NF-18-1-0325), and a gift from William H. Miller III. C.M.S.-R. acknowledges funding from the Miller Institute for Basic Research in Science of UC Berkeley via a Miller Research Fellowship. B.E.C. would like to acknowledge funding from NSF (IHBEM grant 2327710 and Expeditions NSF 1918656). B.T.G. would like to acknowledge the Princeton Catalysis Initiative and Princeton Precision Medicine.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

All data (except Figure 7) are generated via simulation and included in manuscript. Source of data for Figure 7 is cited directly in Figure caption and manuscript text.

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Footnotes

  • arisf{at}princeton.edu

  • matthew.cheung{at}princeton.edu

  • csaadroy{at}berkeley.edu

  • baltazar.espinoza{at}virginia.edu

  • grenfell{at}princeton.edu

  • slevin{at}princeton.edu

Data Availability

All data produced in the present work are contained in the manuscript.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted July 03, 2024.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
The Complex Interplay Between Risk Tolerance and the Spread of Infectious Diseases
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The Complex Interplay Between Risk Tolerance and the Spread of Infectious Diseases
Maximilian Nguyen, Ari Freedman, Matthew Cheung, Chadi Saad-Roy, Baltazar Espinoza, Bryan Grenfell, Simon Levin
medRxiv 2024.07.01.24309771; doi: https://doi.org/10.1101/2024.07.01.24309771
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
The Complex Interplay Between Risk Tolerance and the Spread of Infectious Diseases
Maximilian Nguyen, Ari Freedman, Matthew Cheung, Chadi Saad-Roy, Baltazar Espinoza, Bryan Grenfell, Simon Levin
medRxiv 2024.07.01.24309771; doi: https://doi.org/10.1101/2024.07.01.24309771

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)