Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Enhancing Automated Medical Coding: Evaluating Embedding Models for ICD-10-CM Code Mapping

Vanessa Klotzman
doi: https://doi.org/10.1101/2024.07.02.24309849
Vanessa Klotzman
1Department of Informatics, University of California, Irvine, Irvine, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: vklotzma{at}uci.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Purpose The goal of this study is to enhance automated medical coding (AMC) by evaluating the effectiveness of modern embedding models in capturing semantic similarity and improving the retrieval process for ICD-10-CM code mapping. Achieving consistent and accurate medical coding practices is crucial for effective healthcare management.

Methods We compared the performance of embedding models, including text-embedding-3-large, text-embedding-004, voyage-large-2-instruct, and mistralembed, against ClinicalBERT. These models were assessed for their ability to capture semantic similarity between long and short ICD-10-CM descriptions and to improve the retrieval process for mapping diagnosis strings from the eICU database to the correct ICD-10-CM codes.

Results The text-embedding-3-large and text-embedding-004 models outperformed ClinicalBERT in capturing semantic similarity, with text-embedding-3-large achieving the highest accuracy. For ICD-10 code retrieval, the voyage-large-2-instruct model demonstrated the best performance. Using the 15 nearest neighbors provided the best results. Increasing the number beyond this did not improve accuracy due to a lack of meaningful information.

Conclusion Modern embedding models significantly outperform specialized models like ClinicalBERT in AMC tasks. These findings underscore the potential of these models to enhance medical coding practices, in spite of the challenges with ambiguous diagnosis descriptions.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This study was not funded.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Data Availability

Data will be available upon request.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted July 03, 2024.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Enhancing Automated Medical Coding: Evaluating Embedding Models for ICD-10-CM Code Mapping
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Enhancing Automated Medical Coding: Evaluating Embedding Models for ICD-10-CM Code Mapping
Vanessa Klotzman
medRxiv 2024.07.02.24309849; doi: https://doi.org/10.1101/2024.07.02.24309849
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Enhancing Automated Medical Coding: Evaluating Embedding Models for ICD-10-CM Code Mapping
Vanessa Klotzman
medRxiv 2024.07.02.24309849; doi: https://doi.org/10.1101/2024.07.02.24309849

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Informatics
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)