Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Quantitative Microscopy in Medicine

View ORCID ProfileAlexandre Matov, Shayan Modiri
doi: https://doi.org/10.1101/2024.07.31.24311304
Alexandre Matov
1DataSet Analysis LLC, 155 Jackson St, San Francisco, CA 94111, United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Alexandre Matov
  • For correspondence: matov{at}datasetanalysis.com
Shayan Modiri
2Center for Research in Computer Vision, University of Central Florida, Orlando, FL 32816, United States
3Google Inc., 12400 Bluff Creek Dr, Los Angeles, CA 90094, United States
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

ABSTRACT

Methods for personalizing medical treatment are the focal point of contemporary biomedical research. In cancer care, we can analyze the effects of therapies at the level of individual cells. Quantitative characterization of treatment efficacy and evaluation of why some individuals respond to specific regimens, whereas others do not, requires additional approaches to genetic sequencing at single time points. Methods for the analysis of changes in phenotype, such as in vivo and ex vivo morphology and localization of cellular proteins and organelles can provide important insights into patient treatment options.

Novel therapies are needed to extend survival in metastatic castration-resistant prostate cancer (mCRPC). Prostate-specific membrane antigen (PSMA), a cell surface glycoprotein that is commonly overexpressed by prostate cancer (PC) cells relative to normal prostate cells, provides a validated target.

We developed a software for image analysis designed to identify PSMA expression on the surface of epithelial cells in order to extract prognostic metrics. In addition, our software can deliver predictive information and inform clinicians regarding the efficacy of PC therapy. We can envisage additional applications of our software system, beyond PC, as PSMA is expressed in a variety of tissues. Our method is based on image denoising, topologic partitioning, and edge detection. These three steps allow to segment the area of each PSMA spot in an image of a coverslip with epithelial cells.

Our objective has been to present the community with an integrated, easy to use by all, tool for resolving the complex cytoskeletal organization and it is our goal to have such software system approved for use in the clinical practice.

Competing Interest Statement

The authors have declared no competing interest.

Clinical Protocols

https://www.researchgate.net/publication/374544332_Automated_Enumeration_and_Analysis_of_Circulating_Tumor_Cells_from_Peripheral_Blood_of_Metastatic_Cancer_Patients_for_Diagnosis_and_Refinement_of_Therapy_2012-2015

Funding Statement

This study did not receive any funding

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

IRB protocols 0804009740 at Cornell Medicine.

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Footnotes

  • Corrected minor formatting issues with the manuscript.

Data Availability

All data produced in the present study are available upon reasonable request to the authors

https://github.com/amatov/SegmentationBiomarkerCTC

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted August 14, 2024.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Quantitative Microscopy in Medicine
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Quantitative Microscopy in Medicine
Alexandre Matov, Shayan Modiri
medRxiv 2024.07.31.24311304; doi: https://doi.org/10.1101/2024.07.31.24311304
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Quantitative Microscopy in Medicine
Alexandre Matov, Shayan Modiri
medRxiv 2024.07.31.24311304; doi: https://doi.org/10.1101/2024.07.31.24311304

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Oncology
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)