Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Leveraging Pretrained Models for Multimodal Medical Image Interpretation: An Exhaustive Experimental Analysis

View ORCID ProfileTemitayo Matthew Fagbola, Igwebuike Success
doi: https://doi.org/10.1101/2024.08.09.24311762
Temitayo Matthew Fagbola
1,2Centre of Excellence for Data Science, Artificial Intelligence and Modelling, University of Hull, Kingston Upon Hull, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Temitayo Matthew Fagbola
  • For correspondence: temitayo-matthew.fagbola{at}hull.ac.uk
Igwebuike Success
1,2Centre of Excellence for Data Science, Artificial Intelligence and Modelling, University of Hull, Kingston Upon Hull, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Artificial intelligence (AI) in radiology, particularly pretrained machine learning models, holds promise for overcoming image interpretation complexities and improving diagnostic accuracy. Although extensive research highlights their potential, challenges remain in adapting these models for generalizability across diverse medical image modalities, such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and X-rays. Most importantly, limited generalizability across image modalities hinders their real-world application in diverse medical settings. This study addresses this gap by investigating the effectiveness of pretrained models in interpreting diverse medical images. We evaluated ten state-of-the-art convolutional neural network (CNN) models, including ConvNeXtBase, EfficientNetB7, VGG architectures (VGG16, VGG19), and InceptionResNetV2, for their ability to classify multimodal medical images from brain MRI, kidney CT, and chest X-ray (CXR) scans. Our evaluation reveals VGG16’s superior generalizability across diverse modalities, achieving accuracies of 96% for brain MRI, 100% for kidney CT, and 95% for CXR. Conversely, EfficientNetB7 excelled in brain MRI with 96% accuracy but showed limited generalizability to kidney CT (56% accuracy) and CXR (33% accuracy), suggesting its potential specialization for MRI tasks. Future research should enhance the generalizability of pretrained models across diverse medical image modalities. This includes exploring hybrid models, advanced training techniques, and utilizing larger, more diverse datasets. Integrating multimodal information, such as combining imaging data with patient history, can further improve diagnostic accuracy. These efforts are crucial for deploying robust AI systems in real-world medical settings, ultimately improving patient outcomes.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

The author(s) received no specific funding for this work.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Not Applicable

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

Centre of Excellence for Data Science, AI and Modelling, University of Hull, UK

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Not Applicable

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Not Applicable

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Not Applicable

Data Availability

All relevant data are within the manuscript and its Supporting Information files.

https://www.kaggle.com/datasets/amanullahasraf/covid19-pneumonia-normal-chest-xray-pa-dataset

https://www.kaggle.com/datasets/nazmul0087/ct-kidney-dataset-normal-cyst-tumor-and-stone

https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted August 10, 2024.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Leveraging Pretrained Models for Multimodal Medical Image Interpretation: An Exhaustive Experimental Analysis
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Leveraging Pretrained Models for Multimodal Medical Image Interpretation: An Exhaustive Experimental Analysis
Temitayo Matthew Fagbola, Igwebuike Success
medRxiv 2024.08.09.24311762; doi: https://doi.org/10.1101/2024.08.09.24311762
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Leveraging Pretrained Models for Multimodal Medical Image Interpretation: An Exhaustive Experimental Analysis
Temitayo Matthew Fagbola, Igwebuike Success
medRxiv 2024.08.09.24311762; doi: https://doi.org/10.1101/2024.08.09.24311762

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Radiology and Imaging
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)