ABSTRACT
Background Sleeping at (simulated) altitude is highly common in athletes as an integral part of altitude training camps or sport competitions. However, it is also often feared due to proclaimed negative effects on sleep quality, thereby potentially hampering exercise recovery and next-day exercise performance. We recently showed that ketone ester (KE) ingestion beneficially impacted sleep following strenuous, late evening exercise in normoxia, and alleviated hypoxemia. Therefore, we hypothesized that KE ingestion may be an effective strategy to attenuate hypox(em)ia-induced sleep dysregulations.
Methods Eleven healthy, male participants completed three experimental sessions including normoxic training and subsequent sleep in normoxia or at a simulated altitude of 3,000m while receiving either KE or placebo post-exercise and pre-sleep. Sleep was evaluated using polysomnography, while next-day exercise performance was assessed through a 30-min all-out time trial (TT30’). Physiological measurements included oxygen status, heart rate variability, ventilatory parameters, blood acid-base balance and capillary blood gases.
Results Hypoxia caused a ∼3% drop in sleep efficiency, established through a doubled wakefulness after sleep onset and a ∼22% reduction in slow wave sleep. KE ingestion alleviated the gradual drop in SpO2 throughout the first part of the night, but did not alter hypoxia-induced sleep dysregulations. Neither KE, nor nocturnal hypoxia affected TT30’ performance, but nocturnal hypoxia hampered heart rate recovery following TT30’.
Conclusion We observed that sleeping at 3,000m altitude already impairs sleep efficiency. Although this hypoxia-induced sleep disruption was too subtle to limit exercise performance, we for the first time indicate that sleeping at altitude impairs next-day exercise recovery. KE alleviated nocturnal hypoxemia whenever SpO2 values dropped below ∼85%, but this did not translate into improved sleep or next-day exercise performance.
Competing Interest Statement
The authors have declared no competing interest.
Clinical Trial
NCT06060093
Funding Statement
This research was supported by the Research Foundation Flanders (FWO Weave, research grant G073522N) and Slovene Research Agency grant (N5-0247). CP is supported by an FWO senior postdoctoral research grant (12B0E24N).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Ethics Committee Research (EC Research) of University Hospital Leuven (UZ Leuven) gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors.