Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Benchmarking Vision Encoders for Survival Analysis using Histopathological Images

View ORCID ProfileAsad Nizami, Arita Halder
doi: https://doi.org/10.1101/2024.08.23.24312362
Asad Nizami
1School of Engineering, Jawaharlal Nehru University, New Delhi, India
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Asad Nizami
  • For correspondence: asadnizami123{at}gmail.com
Arita Halder
2Indian Institute of Technology Kharagpur, Kharagpur, India
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Cancer is a complex disease characterized by the uncontrolled growth of abnormal cells in the body but can be prevented and even cured when detected early. Advanced medical imaging has introduced Whole Slide Images (WSIs). When combined with deep learning techniques, it can be used to extract meaningful features. These features are useful for various tasks such as classification and segmentation. There have been numerous studies involving the use of WSIs for survival analysis. Hence, it is crucial to determine their effectiveness for specific use cases. In this paper, we compared three publicly available vision encoders-UNI, Phikon and ResNet18 which are trained on millions of histopathological images, to generate feature embedding for survival analysis. WSIs cannot be fed directly to a network due to their size. We have divided them into 256 × 256 pixels patches and used a vision encoder to get feature embeddings. These embeddings were passed into an aggregator function to get representation at the WSI level which was then passed to a Long Short Term Memory (LSTM) based risk prediction head for survival analysis. Using breast cancer data from The Cancer Genome Atlas Program (TCGA) and k-fold cross-validation, we demonstrated that transformer-based models are more effective in survival analysis and achieved better C-index on average than ResNet-based architecture. The code1 for this study will be made available.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This study did not receive any funding

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

We have used whole slide images and clinical data of patients (id, survival time, censored info only) of breast cancer from TCGA (https://portal.gdc.cancer.gov/projects/TCGA-BRCA).

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Footnotes

  • aritahalder{at}gmail.com

  • ↵1 https://github.com/AsadNizami/Survival-Analysis

Data Availability

All data produced are available online at a private repository which will be made public. link- https://github.com/AsadNizami/Survival-Analysis

https://portal.gdc.cancer.gov/analysis_page?app=Downloads

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted August 23, 2024.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Benchmarking Vision Encoders for Survival Analysis using Histopathological Images
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Benchmarking Vision Encoders for Survival Analysis using Histopathological Images
Asad Nizami, Arita Halder
medRxiv 2024.08.23.24312362; doi: https://doi.org/10.1101/2024.08.23.24312362
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Benchmarking Vision Encoders for Survival Analysis using Histopathological Images
Asad Nizami, Arita Halder
medRxiv 2024.08.23.24312362; doi: https://doi.org/10.1101/2024.08.23.24312362

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Oncology
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)