Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Large-scale genome-wide analyses with proteomics integration reveal novel loci and biological insights into frailty

View ORCID ProfileJonathan K.L. Mak, Chenxi Qin, Anna Kuukka, FinnGen, View ORCID ProfileSara Hägg, View ORCID ProfileJake Lin, View ORCID ProfileJuulia Jylhävä
doi: https://doi.org/10.1101/2024.08.26.24312584
Jonathan K.L. Mak
1Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
2Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jonathan K.L. Mak
Chenxi Qin
1Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anna Kuukka
3Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
4Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Tukholmankatu 8, 00290 Helsinki, Finland
Sara Hägg
1Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sara Hägg
Jake Lin
1Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
3Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jake Lin
Juulia Jylhävä
1Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
5Health Sciences and Gerontology Research Center (GEREC), Faculty of Social Sciences, Tampere University, Tampere, Finland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Juulia Jylhävä
  • For correspondence: juulia.jylhava{at}ki.se
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

Frailty is a clinically relevant phenotype with significant gaps in our understanding of its etiology. We performed a genome-wide association study of frailty in FinnGen (N=500,737) and replicated the signals in the UK Biobank (N=429,463) using polygenic risk scores (PRSs). We prioritized genes through proteomics integration (N∼45,000; UK Biobank) and colocalization of protein quantitative trait loci. Frailty was measured using the Hospital Frailty Risk Score (HFRS). We observed 1,588 variants associated with frailty (p<5×10-8) of which 1,242 were novel, i.e., previously unreported for any trait. The associations mapped to 106 genes of which 31 were novel. PRS replication validated the signals (β=0.074, p<2×10-16). Cell type enrichment analysis indicated expression in neuronal cells. Protein levels of KHK, CGREF1, MET, ATXN2, ALDH2, NECTIN2, APOC1, APOE and FOSB were associated with HFRS, whereas colocalized signals were observed within APOE and BRAP. Our results reveal novel genetic contributions and causal candidate genes for frailty.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This work was supported by the Swedish Research Council (grant no. 2018-02077 to JJ, 2019-01272, 2020-06101, 2022-01608), the Research Council of Finland to JJ (grant no. 3493358), the Sigrid Juselius Foundation to JJ, the Yrjo Jahnsson Foundation to JJ (grant no. 20217416), Instrumentarium Science Foundation to JJ and Signe and Ane Gyllenberg Foundation to JJ (grant no. 6226). This research was conducted using the UK Biobank resource, as part of the registered project 22224. The analyses of UK Biobank genotypes were enabled by resources in project sens2017519 provided by the National Academic Infrastructure for Supercomputing in Sweden (NAISS) at UPPMAX, funded by the Swedish Research Council through grant agreement no. 2022-06725. The FinnGen project is funded by two grants from Business Finland (HUS 4685/31/2016 and UH 4386/31/2016) and the following industry partners: AbbVie Inc., AstraZeneca UK Ltd, Biogen MA Inc., Bristol Myers Squibb (and Celgene Corporation & Celgene International II Sarl), Genentech Inc., Merck Sharp & Dohme Corp, Pfizer Inc., GlaxoSmithKline Intellectual Property Development Ltd., Sanofi US Services Inc., Maze Therapeutics Inc., Janssen Biotech Inc, and Novartis AG. Following biobanks are acknowledged for delivering biobank samples to FinnGen: Auria Biobank (www.auria.fi/biopankki), THL Biobank (www.thl.fi/biobank), Helsinki Biobank (www.helsinginbiopankki.fi), Biobank Borealis of Northern Finland (https://www.ppshp.fi/Tutkimus-ja-opetus/Biopankki/Pages/Biobank-Borealis-briefly-in-English.aspx), Finnish Clinical Biobank Tampere (www.tays.fi/en-US/Research_and_development/Finnish_Clinical_Biobank_Tampere), Biobank of Eastern Finland (www.ita-suomenbiopankki.fi/en), Central Finland Biobank (www.ksshp.fi/fi-FI/Potilaalle/Biopankki), Finnish Red Cross Blood Service Biobank (www.veripalvelu.fi/verenluovutus/biopankkitoiminta) and Terveystalo Biobank (www.terveystalo.com/fi/Yritystietoa/Terveystalo-Biopankki/Biopankki/). All Finnish Biobanks are members of BBMRI.fi infrastructure (www.bbmri.fi). Finnish Biobank Cooperative -FINBB (https://finbb.fi/) is the coordinator of BBMRI-ERIC operations in Finland. The Finnish biobank data can be accessed through the Fingenious services (https://site.fingenious.fi/en/) managed by FINBB.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

FinnGen Patients and control subjects in FinnGen provided informed consent for biobank research, based on the Finnish Biobank Act. Alternatively, separate research cohorts, collected prior the Finnish Biobank Act came into effect (in September 2013) and start of FinnGen (August 2017), were collected based on study-specific consents and later transferred to the Finnish biobanks after approval by Finnish Medicines Agency (Fimea), the National Supervisory Authority for Welfare and Health. Recruitment protocols followed the biobank protocols approved by Fimea. The Coordinating Ethics Committee of the Hospital District of Helsinki and Uusimaa (HUS) statement number for the FinnGen study is Nr HUS/990/2017. The FinnGen study is approved by Finnish Institute for Health and Welfare (permit numbers: THL/2031/6.02.00/2017, THL/1101/5.05.00/2017, THL/341/6.02.00/2018, THL/2222/6.02.00/2018, THL/283/6.02.00/2019, THL/1721/5.05.00/2019 and THL/1524/5.05.00/2020), Digital and population data service agency (permit numbers: VRK43431/2017-3, VRK/6909/2018-3, VRK/4415/2019-3), the Social Insurance Institution (permit numbers: KELA 58/522/2017, KELA 131/522/2018, KELA 70/522/2019, KELA 98/522/2019, KELA 134/522/2019, KELA 138/522/2019, KELA 2/522/2020, KELA 16/522/2020), Findata permit numbers THL/2364/14.02/2020, THL/4055/14.06.00/2020,,THL/3433/14.06.00/2020, THL/4432/14.06/2020, THL/5189/14.06/2020, THL/5894/14.06.00/2020, THL/6619/14.06.00/2020, THL/209/14.06.00/2021, THL/688/14.06.00/2021, THL/1284/14.06.00/2021, THL/1965/14.06.00/2021, THL/5546/14.02.00/2020, THL/2658/14.06.00/2021, THL/4235/14.06.00/202, Statistics Finland (permit numbers: TK-53-1041-17 and TK/143/07.03.00/2020 (earlier TK-53-90-20) TK/1735/07.03.00/2021, TK/3112/07.03.00/2021) and Finnish Registry for Kidney Diseases permission/extract from the meeting minutes on 4th July 2019.

The Biobank Access Decisions for FinnGen samples and data utilized in FinnGen Data Freeze 9 include: THL Biobank BB2017_55, BB2017_111, BB2018_19, BB_2018_34, BB_2018_67, BB2018_71, BB2019_7, BB2019_8, BB2019_26, BB2020_1, Finnish Red Cross Blood Service Biobank 7.12.2017, Helsinki Biobank HUS/359/2017, HUS/248/2020, Auria Biobank AB17-5154 and amendment #1 (August 17 2020), AB20-5926 and amendment #1 (April 23 2020) and its modification (Sep 22 2021), Biobank Borealis of Northern Finland_2017_1013, Biobank of Eastern Finland 1186/2018 and amendment 22 /2020, Finnish Clinical Biobank Tampere MH0004 and amendments (21.02.2020 & 06.10.2020), Central Finland Biobank 1-2017, and Terveystalo Biobank STB 2018001 and amendment 25th Aug 2020.

UK Biobank

The UK Biobank study was approved by the North West Multi-Centre Research Ethics Committee (approval number: 11/NW/03820). All participants provided written informed consent for data collection, analysis, and record linkage. We have also obtained an ethical approval for the use of UK Biobank data in Sweden (Dnr 2016/1888-31/1).

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Data Availability

Individual-level data cannot be stored in public repositories or otherwise made publicly available due to ethical and data protection restrictions. However, data are available upon request for researchers who meet the criteria for access to confidential data. Data from the UK Biobank are available to bona fide researchers upon application at https://www.ukbiobank.ac.uk/enable-your-research. FinnGen results, according to FinnGen consortium agreement, are subjected to one year embargo and summary statistics are then made available to the scientific community and release two times a year. Information on accessing FinnGen data can be found at https://www.finngen.fi/en/access_results.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted August 26, 2024.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Large-scale genome-wide analyses with proteomics integration reveal novel loci and biological insights into frailty
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Large-scale genome-wide analyses with proteomics integration reveal novel loci and biological insights into frailty
Jonathan K.L. Mak, Chenxi Qin, Anna Kuukka, FinnGen, Sara Hägg, Jake Lin, Juulia Jylhävä
medRxiv 2024.08.26.24312584; doi: https://doi.org/10.1101/2024.08.26.24312584
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Large-scale genome-wide analyses with proteomics integration reveal novel loci and biological insights into frailty
Jonathan K.L. Mak, Chenxi Qin, Anna Kuukka, FinnGen, Sara Hägg, Jake Lin, Juulia Jylhävä
medRxiv 2024.08.26.24312584; doi: https://doi.org/10.1101/2024.08.26.24312584

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genetic and Genomic Medicine
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)