Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Computational Analysis of Treatment Resistant Cancer Cells

View ORCID ProfileAlexandre Matov
doi: https://doi.org/10.1101/2024.08.29.24312813
Alexandre Matov
DataSet Analysis LLC
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Alexandre Matov
  • For correspondence: alexandre.matov{at}gmail.com
  • Abstract
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

ABSTRACT

Prostate cancer (PC), which is a disease driven by the activity of the androgen receptor (AR), is the most commonly diagnosed malignancy and despite advances in diagnostic and treatment strategies, PC is the second most common cause of cancer mortality in men (Bray et al., 2018). Taxane-based chemotherapy is the only chemotherapy that prolongs survival in metastatic PC patients (Petrylak et al., 2004; Tannock et al., 2004). At the cellular level, taxanes bind to and stabilize microtubules (MTs) inhibiting all MT-dependent intracellular pathways. MTs are highly dynamic polymers that stochastically switch between phases of growth, shrinkage, and pause (Jordan and Wilson, 2004). Altered MT dynamics endow cancer cells with both survival and migratory advantages (Mitchison, 2012). Taxanes inhibit MT dynamics and alter the spatial organization of the MT network, thereby inhibiting intracellular trafficking of molecular cargo critical for tumor survival. In PC specifically, taxanes inhibit transcriptional activity downstream of MT stabilization (Thadani-Mulero et al., 2012) and AR nuclear accumulation (Darshan et al., 2011; Zhu et al., 2010).

Different tubulin inhibitors, even from within the same structural class as the taxanes, affect distinct parameters of MT dynamics (Jordan and Wilson, 2004), yet the selection of taxane for chemotherapy is not based on the particular patterns of dynamic behavior of the MT cytoskeleton in individual patients. We envisage that systematic characterization using quantitative analysis of MT dynamics in PC patient cells expressing clinically relevant protein isoforms (Matov et al., 2024; Thoma et al., 2010), before and after treatment with each of the taxanes, will allow us to identify criteria for the selection of the most suitable drug combination at the onset of treatment. We link MT dynamics in the presence of AR variants and sensitivity/resistance to taxanes and connect fundamental research with clinically relevant concepts to elucidate cellular mechanisms of clinical response to taxanes and, thus, advance the customization of therapy. Our computational live-cell analysis addresses questions in the context of the inherent differences in MT homeostasis as a function of AR content in PC cells, the specific parameters of MT dynamics each of the taxanes affects, and how can this information be used to match endogenous patterns of MT dynamics with drug-modulated MT behavior. We investigate whether the sensitivity to taxanes, evaluated by computational analysis of MTs, can be linked to gene expression correlated with AR and its variants, and whether the resistance to taxanes can be linked to the presence of a specific AR splice variant, and can we identify which of the taxanes will be most effective based on the endogenous patterns of MT dynamics.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This study did not receive any funding

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

The patient blood samples analyzed were from clinical studies with IRB protocols 0804009740 and 0707009283 at Cornell Medicine. I am grateful to the Genitourinary Tissue Utilization committee and the Genitourinary and Prostate SPORE Tissue Cores at the UCSF Cancer Center for the approval of my tissue requests #14-04 and #16-5 and the Stand Up To Cancer / Prostate Cancer Foundation (SU2C/PCF) West Coast Dream Team (WCDT).

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Footnotes

  • Corrected several formatting issues in the manuscript.

Data Availability

All data produced in the present study are available upon reasonable request to the authors

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted September 04, 2024.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Computational Analysis of Treatment Resistant Cancer Cells
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Computational Analysis of Treatment Resistant Cancer Cells
Alexandre Matov
medRxiv 2024.08.29.24312813; doi: https://doi.org/10.1101/2024.08.29.24312813
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Computational Analysis of Treatment Resistant Cancer Cells
Alexandre Matov
medRxiv 2024.08.29.24312813; doi: https://doi.org/10.1101/2024.08.29.24312813

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)