ABSTRACT
Mutations commonly found in AML such as DNMT3A, TET2 and ASXL1 can be found in the peripheral blood of otherwise healthy adults – a phenomenon referred to as clonal hematopoiesis (CH). These mutations are thought to represent the earliest genetic events in the evolution of AML. Genomic studies on samples acquired at diagnosis, remission, and at relapse have demonstrated significant stability of CH mutations following induction chemotherapy. Meanwhile, later mutations in genes such as NPM1 and FLT3, have been shown to contract at remission and in the case of FLT3 often are absent at relapse. We sought to understand how early CH mutations influence subsequent evolutionary trajectories throughout remission and relapse in response to induction chemotherapy. Here, we assembled a retrospective cohort of patients diagnosed with de novo AML at our institution that underwent genomic sequencing at diagnosis as well as at the time of remission and/or relapse (total n = 182 patients). Corroborating prior studies, FLT3 and NPM1 mutations were generally eliminated at the time of cytologic complete remission but subsequently reemerged upon relapse, whereas DNMT3A, TET2 and ASXL1 mutations often persisted through remission. Early CH-related mutations exhibited distinct constellations of co-occurring genetic alterations, with NPM1 and FLT3 mutations enriched in DNMT3Amut AML, while CBL and SRSF2 mutations were enriched in TET2mut and ASXL1mut AML, respectively. In the case of NPM1 and FLT3 mutations, these differences vanished at the time of complete remission yet readily reemerged upon relapse, indicating the reproducible nature of these genetic interactions. Thus, early CH-associated mutations that precede malignant transformation subsequently shape the evolutionary trajectories of AML through diagnosis, therapy, and relapse.
Key Points
DNMT3A, TET2 and ASXL1 mutations persist through AML-directed therapy
Distinct CH-related mutations shape the evolutionary trajectories of AML from diagnosis through relapse.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
R.L.B. was supported by the National Cancer Institute (R00CA248460, UG1CA233332), American Society of Hematology and the Leukemia Research Foundation.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
All sequencing results, ancillary studies, and clinical information were collected retrospectively in accordance with protocols approved by the Institutional Review Board at the University of Pennsylvania.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Footnotes
Conflict of interest statement: No conflict of interest is declared.
Data availability
All mutation calls and clinical annotations are publicly available on Github: https://github.com/rdchow/PennAML.