Identifying Explosive Epidemiological Cases with Unsupervised Machine Learning
View ORCID ProfileSerge Dolgikh
doi: https://doi.org/10.1101/2020.05.17.20104661
Serge Dolgikh
1National Aviation University, Kyiv

Data Availability
The data referred to is enclosed or referenced in the manuscript
Posted October 19, 2020.
Identifying Explosive Epidemiological Cases with Unsupervised Machine Learning
Serge Dolgikh
medRxiv 2020.05.17.20104661; doi: https://doi.org/10.1101/2020.05.17.20104661
Subject Area
Subject Areas
- Addiction Medicine (349)
- Allergy and Immunology (668)
- Allergy and Immunology (668)
- Anesthesia (181)
- Cardiovascular Medicine (2648)
- Dermatology (223)
- Emergency Medicine (399)
- Epidemiology (12228)
- Forensic Medicine (10)
- Gastroenterology (759)
- Genetic and Genomic Medicine (4103)
- Geriatric Medicine (387)
- Health Economics (680)
- Health Informatics (2657)
- Health Policy (1005)
- Hematology (363)
- HIV/AIDS (851)
- Medical Education (399)
- Medical Ethics (109)
- Nephrology (436)
- Neurology (3882)
- Nursing (209)
- Nutrition (577)
- Oncology (2030)
- Ophthalmology (585)
- Orthopedics (240)
- Otolaryngology (306)
- Pain Medicine (250)
- Palliative Medicine (75)
- Pathology (473)
- Pediatrics (1115)
- Primary Care Research (452)
- Public and Global Health (6527)
- Radiology and Imaging (1403)
- Respiratory Medicine (871)
- Rheumatology (409)
- Sports Medicine (342)
- Surgery (448)
- Toxicology (53)
- Transplantation (185)
- Urology (165)