MICNet: Prediction of antibiotic susceptibility from microscopic images using transfer learning
View ORCID ProfileAdrian Viehweger, Martin Hölzer, Christian Brandt
doi: https://doi.org/10.1101/2022.04.19.22269518
Adrian Viehweger
1Institute of Medical Microbiology and Virology, University Hospital Leipzig, Leipzig, Germany
Martin Hölzer
2Methodology and Research Infrastructure, MF1 Bioinformatics, Robert Koch Institute, Berlin, Germany
Christian Brandt
3Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany

Data Availability
All data produced in the present study are available upon reasonable request to the authors
Posted April 21, 2022.
MICNet: Prediction of antibiotic susceptibility from microscopic images using transfer learning
Adrian Viehweger, Martin Hölzer, Christian Brandt
medRxiv 2022.04.19.22269518; doi: https://doi.org/10.1101/2022.04.19.22269518
Subject Area
Subject Areas
- Addiction Medicine (349)
- Allergy and Immunology (668)
- Allergy and Immunology (668)
- Anesthesia (181)
- Cardiovascular Medicine (2648)
- Dermatology (223)
- Emergency Medicine (399)
- Epidemiology (12228)
- Forensic Medicine (10)
- Gastroenterology (759)
- Genetic and Genomic Medicine (4103)
- Geriatric Medicine (387)
- Health Economics (680)
- Health Informatics (2657)
- Health Policy (1005)
- Hematology (363)
- HIV/AIDS (851)
- Medical Education (399)
- Medical Ethics (109)
- Nephrology (436)
- Neurology (3882)
- Nursing (209)
- Nutrition (577)
- Oncology (2030)
- Ophthalmology (585)
- Orthopedics (240)
- Otolaryngology (306)
- Pain Medicine (250)
- Palliative Medicine (75)
- Pathology (473)
- Pediatrics (1115)
- Primary Care Research (452)
- Public and Global Health (6527)
- Radiology and Imaging (1403)
- Respiratory Medicine (871)
- Rheumatology (409)
- Sports Medicine (342)
- Surgery (448)
- Toxicology (53)
- Transplantation (185)
- Urology (165)