Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Deep learning application to automatic classification of pharmacist interventions

Ahmad Alkanj, Julien Godet, Erin Johns, Bénédicte Gourieux, Bruno Michel
doi: https://doi.org/10.1101/2022.11.30.22282942
Ahmad Alkanj
1Laboratoire de Pharmacologie et Toxicologie NeuroCardiovasculaire UR7296, Département Universitaire de Pharmacologie, Addictologie, Toxicologie et Thérapeutique, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Julien Godet
2ICube - IMAGeS, UMR 7357, Université de Strasbourg, France
3Groupe Méthodes Recherche Clinique, Pôle de Santé Publique, Hôpitaux Universitaires de Strasbourg, France
4Faculté de Pharmacie, Université de Strasbourg, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: julien.godet{at}unistra.fr
Erin Johns
1Laboratoire de Pharmacologie et Toxicologie NeuroCardiovasculaire UR7296, Département Universitaire de Pharmacologie, Addictologie, Toxicologie et Thérapeutique, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, France
2ICube - IMAGeS, UMR 7357, Université de Strasbourg, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bénédicte Gourieux
1Laboratoire de Pharmacologie et Toxicologie NeuroCardiovasculaire UR7296, Département Universitaire de Pharmacologie, Addictologie, Toxicologie et Thérapeutique, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, France
5Service de Pharmacie, Hôpitaux Universitaires de Strasbourg, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bruno Michel
1Laboratoire de Pharmacologie et Toxicologie NeuroCardiovasculaire UR7296, Département Universitaire de Pharmacologie, Addictologie, Toxicologie et Thérapeutique, Centre de Recherche en Biomédecine de Strasbourg (CRBS), Université de Strasbourg, France
4Faculté de Pharmacie, Université de Strasbourg, France
5Service de Pharmacie, Hôpitaux Universitaires de Strasbourg, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Data Availability

All data produced in the present study are available upon reasonable request to the authors

Back to top
PreviousNext
Posted December 20, 2022.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Deep learning application to automatic classification of pharmacist interventions
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Deep learning application to automatic classification of pharmacist interventions
Ahmad Alkanj, Julien Godet, Erin Johns, Bénédicte Gourieux, Bruno Michel
medRxiv 2022.11.30.22282942; doi: https://doi.org/10.1101/2022.11.30.22282942
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Deep learning application to automatic classification of pharmacist interventions
Ahmad Alkanj, Julien Godet, Erin Johns, Bénédicte Gourieux, Bruno Michel
medRxiv 2022.11.30.22282942; doi: https://doi.org/10.1101/2022.11.30.22282942

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Informatics
Subject Areas
All Articles
  • Addiction Medicine (349)
  • Allergy and Immunology (668)
  • Allergy and Immunology (668)
  • Anesthesia (181)
  • Cardiovascular Medicine (2648)
  • Dentistry and Oral Medicine (316)
  • Dermatology (223)
  • Emergency Medicine (399)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (942)
  • Epidemiology (12228)
  • Forensic Medicine (10)
  • Gastroenterology (759)
  • Genetic and Genomic Medicine (4103)
  • Geriatric Medicine (387)
  • Health Economics (680)
  • Health Informatics (2657)
  • Health Policy (1005)
  • Health Systems and Quality Improvement (985)
  • Hematology (363)
  • HIV/AIDS (851)
  • Infectious Diseases (except HIV/AIDS) (13695)
  • Intensive Care and Critical Care Medicine (797)
  • Medical Education (399)
  • Medical Ethics (109)
  • Nephrology (436)
  • Neurology (3882)
  • Nursing (209)
  • Nutrition (577)
  • Obstetrics and Gynecology (739)
  • Occupational and Environmental Health (695)
  • Oncology (2030)
  • Ophthalmology (585)
  • Orthopedics (240)
  • Otolaryngology (306)
  • Pain Medicine (250)
  • Palliative Medicine (75)
  • Pathology (473)
  • Pediatrics (1115)
  • Pharmacology and Therapeutics (466)
  • Primary Care Research (452)
  • Psychiatry and Clinical Psychology (3432)
  • Public and Global Health (6527)
  • Radiology and Imaging (1403)
  • Rehabilitation Medicine and Physical Therapy (814)
  • Respiratory Medicine (871)
  • Rheumatology (409)
  • Sexual and Reproductive Health (410)
  • Sports Medicine (342)
  • Surgery (448)
  • Toxicology (53)
  • Transplantation (185)
  • Urology (165)